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CONTENTS

Notation:

• N = {0, 1, 2, · · · }}, R+ = [0,∞).

• L d is the Lebesgue measure on Rd.

• Sd+ is the collection of all symmetric non-negative matrix in Rd×d. For any δ ∈ (0, 1],
Sdδ :=

{
a ∈ Sd+ : aij = aji, δId 6 a 6 δ−1Id

}
.

• We use := as a way of definition.

• The letter c or C with or without subscripts stands for an unimportant constant,
whose value may change in different places. We use a � b to denote that a and b
are comparable up to a constant, and use a . b (a & b) to denote a 6 Cb (a > Cb)
for some constant C.

• Wt is a Brownian motion staring from 0 and W x
t a Brownian motion staring from

x.

• τD is the first exit time of a process from domain D; σΓ is the first hitting time of
Γ.
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Chapter 1

Brownian motion and Martingale

1.1 Probabilistic terminology

Let (Ω,F ,P) be a probability space and (E, E) be a measurable space. X : (Ω,F) →
(E, E) a measurable map, and G a σ-field ⊆ F .

When E = R, we define the conditional expectation of X given G, E(X|G), to be
any random variable Y that satisfies

(a) Y ∈ G;

(b) for all A ∈ G, E(X;A) = E(Y ;A).

QG : Ω× E → [0, 1] is said to be a regular conditional distribution (RCD) for X
given G if

(a) For each A ∈ E , ω 7→ QG(ω,A) is a version of E(1A(X)|G);

(b) For a.e. ω ∈ Ω, A 7→ QG(ω,A) is a probability measure.

If E = Ω, X(ω) = ω, then QG is called a regular conditional probability.
The following results can be found in Durrett’s book [Dur19].

Proposition 1.1.1. (i) If G1 ⊆ G2 ⊆ F , then

E[(X|G2)|G1] = E(X|G1) (1.1)

(ii) Assume that X ∈ F and Y ∈ G ⊆ F , then

E(XY |G) = E(X|G)Y. (1.2)

(iii) (Jesen’s inequality) If ϕ is a convex function, then

E(ϕ(X)|G) 6 ϕ(E(X|G)). (1.3)

Proposition 1.1.2. Let QG be a RCD for X given G. If f : E → R satisfying E|f(X)| <
∞, then

E(f(X)|G)(ω) =

ˆ
E

f(x)QG(ω, dx) a.s..
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1.2 Brownian motion

A measurable space (E, E) is said to be standard if (E, E) is isomorphic (as a mea-
surable space) to (R;B(R)).

Theorem 1.1.3. RCD exists if (E,B(E)) is a standard measure space.

Proposition 1.1.4. Assume X > 0, f : R+ → R+ such that f ∈ C1(R+) and f(0) = 0.
Then

Ef(X) =

ˆ ∞
0

f ′(t)P(X > t)dt. (1.4)

Exercise 1.1.1. If X > 0, f : R+ → R+ such that f ∈ C1(R+) and f(∞) = 0. Then

Ef(X) = −
ˆ ∞

0

f ′(t)P(X 6 t)dt. (1.5)

1.2 Brownian motion

A stochastic process defined on (Ω,F ,P) taking value in E can be understood in various
ways. It involves a collection of random variables Xt ∈ E indexed by a parameter set
T (usually, T = N or R+), where Xt is a measurable map from (Ω,F ,P) to (E,B(E)
for each t ∈ T. The parameter set T typically represents time and can be discrete or
continuous. The process can also be regard as a measurable map from (Ω,F ,P) to the
space of functions ET. The Kolmogorov σ-field on ET is the smallest σ-field making the
projections πt : ET 3 f 7→ f(t) ∈ E measurable. This definition ensures that a random
map Ω 3 ω 7→ X·(ω) ∈ ET is measurable if its component random variables Xt : Ω→ E
are measurable for all t ∈ T. Therefore, the mapping ω 7→ X·(ω) induces a measure on
(ET,B(ET)) denoted by P. The underlying probability model (Ω,F ,P) is replaceable by
the canonical model (P, ET,B(ET)) with a specific choice of Xt(f) = πt(f) = f(t). In
simpler terms, a stochastic process is just a probability measure P on (ET,B(ET)).

Another point of view is that the only relevant objects are the joint distributions of
(Xt1 , Xt2 , ..., Xtn) for every n and every finite subset I = (t1, t2, ..., tn) of T. These can be
specified as probability measures µI on Rn. These µI cannot be totally arbitrary. If we
allow different permutations of the same set, so that I and I ′ are permutations of each
other then µI and µI′ should be related by the same permutation. If I ⊆ I ′, then we
can obtain the joint distribution of (Xt)t∈I by projecting the joint distribution of (Xt)t∈I′
from Rn′ to Rn where n and n′ are the cardinalities of I and I ′ respectively. A stochastic
process can then be viewed as a family (µI) of distributions on various finite dimensional
spaces that satisfy the consistency conditions. A theorem of Kolmogorov says that this is
not all that different. Any such consistent family arises from a P on (ET,B(ET)) which
is uniquely determined by the family (µI).

Theorem 1.2.1 (Kolmogorov’s consistency Theorem, cf. [Yan21]). Let E be a standard
measure space. Assume that we are given for every t1, ..., tn ∈ T a probability measure
µt1···tn on En, and that these probability measures satisfy:

(a). for each τ ∈ Sn and Ai ∈ B(E),

µt1···tn(A1 × ...× An) = µtτ(1)···tτ(n)(Aτ(1) × ...× Aτ(n));
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(b). for each Ai ∈ B(E),

µt1···tn(A1 × ...× An−1 × E) = µt1···tn−1(A1 × ...× An−1).

Then, there is a unique probability measure P on (ET,B(ET)) such that for t1, ..., tn ∈
T, A1, ..., An ∈ B(E): P(f(t1) ∈ A1, ..., f(tn) ∈ An) = µt1,...,tn(A1 × ...× An).

Definition 1.2.2. A stochastic process (Wt)t∈R+ is a one-dimensional Brownian motion
started at 0 if

(a) W0 = 0, a.s.;

(b) for all s 6 t,Wt−Ws is a mean zero Gaussian random variable with variance t− s;

(c) for all s < t,Wt −Ws is independent of σ (Wr; r 6 s);

(d) with probability 1 the map t 7→ Wt(ω) is continuous.

By Theorem 1.2.1, we can define a probability measure Q on RR+ (E = R,T =
R+) such that the canonical process Xt(f) = f(t) satisfies (a), (b) and (c). However,
whether the measure is concentrated on the space of continuous functions is not a simple
question. In fact, since T = R+ is uncountable the space of bounded functions, continuous
functions, etc., are not measurable sets of RR+ . They do not belong to the natural σ-
field. Essentially, in probability theory, the rules involve only a countable collection of sets
at one time, and any information that involves the values of an uncountable number of
measurable functions is beyond reach. There is an intrinsic reason for this. In probability
theory, we can always change the values of a random variable on a set of measure 0, and
we have not changed anything significant. Since we are allowed to mess up each function
on a set of measure 0, we have to assume that each function has indeed been messed up
on a set of measure 0. If we are dealing with a countable number of functions, the ’mess
up’ has occurred only on the countable union of these individual sets of measure 0, which,
by the properties of a measure, is again a set of measure 0. On the other hand, if we are
dealing with an uncountable set of functions, then these sets of measure 0 can possibly
gang up on us.

Of course it would be foolish of us to mess things up unnecessarily. If we can clean
things up and choose a nice version of our random variables we should do so. But we
cannot really do this sensibly unless we decide first what nice means. We however face
the risk of being too greedy and it may not be possible to have a version as nice as we
seek. But then we can always change our mind.

Lemma 1.2.3 (Fractional Sobolev inequality). Let D be an open set in Rn, p > 1 and
s ∈ (n/p, 1). Let f : D → Rd be a measurable function. Assume¨

D×D

|f(x)− f(y)|p

|x− y|n+sp
dxdy <∞.

Then there exists a version of f , say f̃ , such that

sup
x,y∈D

|f̃(x)− f̃(y)|p

|x− y|sp−n
6 C

(¨
D×D

|f(x)− f(y)|pB
|x− y|n+sp

dxdy

)1/p

, (1.6)

Here C only depends on n, s, p and D.
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1.3 Martingale

Theorem 1.2.4. Let I = [0, T ], and let p > 1 and β ∈ (1/p, 1). Assume (Xt)t∈I satisfies

E|Xs −Xt|p 6 c|t− s|1+βp, ∀t, s ∈ I. (1.7)

Then there exists a version of X, Y (for each t ∈ I, P(Xt = Yt) = 1) such that

P

(
sup
t∈I

|Yt − Ys|
|t− s|α

6 K

)
= 1,

where α ∈ (0, β − 1/p), K = K(α, β, p, c, I, ω) and EKp <∞.

Proof. Regard X as a measurable function from Ω × I to Rd. By Lemma 1.2.3, there is
a null set N ⊆ Ω and a measurable function Y : Ω× I → B, such that for each ω /∈ N ,

L 1 ({t ∈ I : Yt(ω) 6= Xt(ω)}) = 0,

and Y (ω)· is a constinous function. Moreover,

‖Y·(ω)‖Cα(I) . K(ω) :=

(¨
I×I

|Xt(ω)−Xs(ω)|p

|t− s|2+αp
dsdt

)1/p

∈ Lp(P).

By Fubini theorem, there exists a L -null set N ⊆ I, such that for each t /∈ N , P(Xt 6=
Yt) = 0. For any t0 ∈ N , by (1.7), one can see that Xtn

P−−−−−−−→
I\N3tn→t0

Xt0 . On the other

hand, Xtn
a.s.
= Ytn → Yt0 , so we have Xt0

a.s.
= Yt0 . Therefore, Y is a version of X.

Thanks to Theorem 1.2.4 and the discussion after Definition 1.2.2, we get the existence
of Brownian motion.

1.3 Martingale

1.3.1 Discrete time

Let (Ω,F ,P) be a standard probability space. Let Fn (n ∈ N) be an increasing sequence
of σ-fields. A sequence of random variables Xn is adapted to Fn if for each n,Xn is Fn
measurable. Similarly a collection of random variables Xt (t ∈ R+) is adapted to Ft if
each Xt is Ft measurable. We say the filtration Ft satisfies the usual conditions if Ft
is right continuous (i.e., Ft = Ft+ for all t, where Ft+ = ∩ε>0Ft+ε ) and each Ft is
complete (i.e., Ft contains all P-null sets).

We say τ : Ω→ N (R+)∪{∞} is a stopping time if τ satisfying {τ 6 n} ∈ Fn ({τ 6
t} ∈ Ft), for each n ∈ N (t ∈ R+).
Fτ is a σ-field containing all measurable sets A ∈ cF such that A ∩ {τ 6 n} ∈

Fn (A ∩ {τ 6 t} ∈ Ft) for all n ∈ N (t ∈ R+).

Definition 1.3.1. Let Xt be a real-valued Ft-adapted processes. If for each t and s <
t, Xt is integrable and E(Xt|Fs) > (6)Xs a.s., then we call Xt is a submartingale
(supermartingale). We say Xt is a martingale if it is both a submartingale and a
supermartingale.
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Suppose Mn is a martingale, and ϕ is convex function. Assume that E|ϕ(Mn)| <∞,
in the light of Jesen’s inequality, ϕ(Mn) is a submartingale.

Example 1. Let ξ1, ξ2, · · · be a sequence of i.i.d random variable. Set Xn :=
∑n

i=0 ξi and
Fn := σ(ξ0, · · · ξn).

Below we recall the results about discrete time martingales and submartingales that
will be used. The proof of the subsequent statements can be found in Durrett’s book
[Dur19], and in many other books dealing with discrete time martingales.

Theorem 1.3.2 (Doob). If Xn ∈ Fn is a submartingale then it can be uniquely decom-
posed as Xn = Mn +An, where Mn ∈ Fn is martingale, A0 = 0, An+1 > An almost surely
and An is Fn−1-measurable.

Proof. Let

A0 = 0, An :=
n∑
k=1

E(Xk −Xk−1|Fk−1)

and

Mn = Xn − An = X0 +
n∑
k=1

[(Xk −Xk−1)− E(Xk −Xk−1|Fk−1)] .

Then Mn and An are the desired processes. The proof for the uniqueness result is easy.

The following theorem lies at the basis of all other results for martingales.

Theorem 1.3.3 (Doob’s Optional stopping theorem). Assume that σ and τ are two
bounded stopping time, and Xt is a submartingale, then E(Xτ |Fσ) > Xσ∧τ .

Lemma 1.3.4. Let Xn be a submartingale, and τ be a bounded stopping time and τ 6 K
(constant). Then

(i) E(XK |Fτ ) > Xτ ;

(ii) Xτ∧n is a Fn-submartingale.

Proof. (i). for each A ∈ Fτ , we will show that E(XK ;A) > E(Xτ ;A). In fact,

E(Xτ ;A) =
K∑
k=0

E(Xk;A ∩ {τ = k}︸ ︷︷ ︸
∈Fk

) 6
K∑
k=0

E(XK ;A ∩ {τ = k}) = E(XK ;A).

(ii). For each A ∈ Fn−1,

E(Xτ∧n;A) =E(Xτ∧n;A ∩ {τ 6 n− 1}) + E(Xτ∧n;A ∩ {τ > n− 1})
=E(Xτ ;A ∩ {τ 6 n− 1}) + E(Xn;A ∩ {τ > n− 1}︸ ︷︷ ︸

∈Fn−1

)

>E(Xτ ;A ∩ {τ 6 n− 1}) + E(Xn−1;A ∩ {τ > n− 1})
=E(Xτ∧(n−1);A).

11



1.3 Martingale

Proof of Theorem 1.3.3. By the above lemma, we have E(Xτ |Fσ) = E(XK∧τ |Fσ) > Xσ∧τ .

Theorem 1.3.5 (Doob’s inequality). Let Mn be a martingale. If M∗
n := supk6n |Mk|,

then
P(M∗

n > λ) 6 λ−1E(|Mn|;M∗
n > λ).

Proof. Let τ = inf{k : |Mk| > λ}. Noting that {M∗
n > λ}} = {τ 6 n}, we have

λP(M∗
n > λ) =λP(τ 6 n) 6 E(|Mτ |; τ 6 n)

6E(|Mτ∧n|; τ 6 n) 6 E(|Mn|;M∗
n > λ).

Corollary 1.3.6. Let Mn be a martingale and T be a stopping time. For each p > 1,
E|M∗

T |p 6 CpE|MT |p.

Let a 6 b. Set σ1 = inf{n > 0 : Xn 6 a}, τ1 = inf{n > σ1 : Xn > b}, σ2 = inf{n >
τ1 : Mn 6 a}, τ2 = inf{n > σ2 : Xn > b}, . . . , and UN := max{k : τk 6 N}.

Lemma 1.3.7 (Upcrossing inequality). Suppose that XN is a submartingale, then

(b− a)EUN(a, b) 6 E(XN − a)+.

Proof. We only prove the case that a = 0 and Xk > 0.

XN = XS1∧N︸ ︷︷ ︸
>0

+
∞∑
i=1

XTi∧N −XSi∧N︸ ︷︷ ︸
>bUN (0,b)

+
∞∑
i=1

XSi+1∧N −XTi∧N︸ ︷︷ ︸
positive expectation

.

Upcrossing inequality leads to

Theorem 1.3.8. If Xn is a submartingale such that supn EX+
n <∞, then Xn converges

a.s. as n→∞.

Corollary 1.3.9. Suppose that X ∈ L1(P,Ω), Fn ↑ F∞, then

lim
n→∞

E(X|Fn) = E(X|F∞), a.s. and in L1.

1.3.2 Continuous time

All of the above results also hold for all right continuous martingale (sub-
martingales) (see [Hua01]), except the Doob decomposition theorem.

The celebrated Doob-Meyer decomposition says that, under mild hypotheses, a
submartingale can be decomposed into a martingale plus an increasing process. We are
limiting ourselves to continuous submartingales, and the theorem we want to state is the
following.
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Theorem 1.3.10. Suppose that Xt is a continuous submartingale, then there exists a
unique martingale M and a unique continuous adapted process A with finite bounded
variation on each interval such that

A0 = 0, Xt = Mt + At.

We say that Mt if a local martingale if there exist stopping times τn ↑ ∞ such that
Xτn∧t is a martingale for each n ∈ N. A process is a semimartingale if it is the sum
of a local martingale and a process that is locally of finite bounded variation (i.e., finite
bounded variation on every interval [0, t]). We will be dealing almost exclusively with
continuous processes, so unless stated otherwise, all of our processes will have continuous
paths.

If M is a continuous square integrable martingale, then M2 is a submartingale. In the
light of Doob-Meyer’s decomposition theorem, there is a (unique) increasing continuous
process, denoted by 〈M〉t such that M2

t − 〈M〉t is a martingale. Particularly, EM2
t −

EM2
0 = E〈M〉t. More general, if M is a local martingale, the quadratic variation

of M is the unique increasing continuous process 〈M〉t such that M2
t − 〈M〉t is a local

martingale.
If Xt = Mt + At, where Mt is a local martingale and At has paths of locally finite

bounded variation, then 〈X〉t is defined to be 〈M〉t. If X and Y are two semimartingales,
we define

〈X, Y 〉t =
1

2
(〈X + Y 〉t − 〈X〉t − 〈Y 〉t) .

Lemma 1.3.11. Let Mt be a square integrable martingale (that is, Mt ∈ L2 for every
t > 0 ). Let 0 6 s < t and let s = t0 < t1 < · · · < tn = t be a division of the interval [s, t].
Then,

E

[
n∑
i=1

(
Mti −Mti−1

)2 | Fs

]
= E

[
M2

t −M2
s | Fs

]
= E

[
(Mt −Ms)

2 | Fs
]
.

Proof. For every i = 1, . . . , n,

E
[(
Mti −Mti−1

)2 | Fs
]

= E
[
E
[(
Mti −Mti−1

)2 | Fti−1

]
| Fs

]
= E

[
E
[
M2

ti
| Fti−1

]
− 2Mti−1

E
[
Mti | Fti−1

]
+M2

ti−1
| Fs

]
= E

[
E
[
M2

ti
| Fti−1

]
−M2

ti−1
| Fs

]
= E

[
M2

ti
−M2

ti−1
| Fs

]
and the desired result follows by summing over i.

Theorem 1.3.12. Let Mt be a continuous local martingale. There exists an increasing
process denoted by 〈M〉t, which is unique up to indistinguishability, such that M2

t −〈M〉t is
a continuous local martingale. Furthermore, for every fixed t > 0, if πn = {(tn0 , · · · , tnkn) :

13



1.3 Martingale

0 = tn0 < tn1 < · · · < tnkn = t} is an increasing sequence of subdivisions of [0, t] with mesh
going to 0 , then we have

〈M〉t = lim
n→∞

kn∑
i=1

(
Mtni
−Mtni−1

)2

(1.8)

in probability. The process 〈M〉t is called the quadratic variation of Mt.

Lemma 1.3.13. Let Mt be a continuous bounded martingale. Let πn = {(tn0 , · · · , tnkn) :
0 = tn0 < tn1 < · · · < tnkn = T} be an increasing sequence of subdivisions of [0, T ] with mesh
going to 0 , then for each n,

Nn
t :=

kn∑
i=1

Mti−1
(Mti∧t −Mti−1∧t)

is a martingale, and there exists a continuous square integrable martingale Nt such that

E sup
t∈[0,T ]

|Nn
t −Nt|2 → 0.

Proof. It is easy to verify that Nn
t is a martingale. Let us fix n 6 m and evaluate the

product E (Nn
TN

m
T ). This product is equal to

kn∑
i=1

km∑
j=1

E
[
Mtni−1

(
Mtni
−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
.

In this double sum, the only terms that may be nonzero are those corresponding to
indices i and j such that the interval

(
tmj−1, t

m
j

]
is contained in

(
tni−1, t

n
i

]
. Indeed, suppose

that tni 6 tmj−1 (the symmetric case tmj 6 tni−1 is treated in an analogous way).
Then, conditioning on the σ-field Ftmj−1

, we have

E
[
Mtni−1

(
Mtni
−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
=E

[
Mtni−1

(
Mtni
−Mtni−1

)
Mtmj−1

E
[
Mtmj

−Mtmj−1
| Ftmj−1

]]
= 0.

For every j = 1, . . . , km, write in,m(j) for the unique index i such that
(
tmj−1, t

m
j

]
⊂(

tni−1, t
n
i

]
. It follows from the previous considerations that

E [Nn
TN

m
T ] =

∑
16j6km,i=in,m(j)

E
[
Mtni−1

(
Mtni
−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
.

In each term E
[
Mtni−1

(
Mtni
−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
, we can now decompose

Mtni
−Mtni−1

=
∑

k:in,m(k)=i

(
Mtmk

−Mtmk−1

)
14



and we observe that, if k is such that in,m(k) = i but k 6= j,

E
[
Mtni−1

(
Mtmk

−Mtmk−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
= 0

(condition on Ftmk−1
if k > j and on Ftmj−1

if k < j ). The only case that remains is k = j,
and we have thus obtained

E [Nn
TN

m
T ] =

∑
16j6km,i=in,m(j)

E

[
Mtni−1

Mtmj−1

(
Mtmj

−Mtmj−1

)2
]
.

As a special case of this relation, we have

E
[
(Nm

T )2] =
∑

16j6km

E

[
M2

tmj−1

(
Mtmj

−Mtmj−1

)2
]
.

Furthermore,

E
[
(Nn

T )2] =
∑

16i6kn

E

[
M2

tni−1

(
Mtni
−Mtni−1

)2
]

=
∑

16i6kn

E

[
M2

tni−1
E

[(
Mtni
−Mtni−1

)2

| F n
ini−1

]]

=
∑

16i6kn

E

M2
tni−1

∑
j:in,m(j)=i

E

[(
Mtmj

−Mm
tmj−1

)2

| Ftni−1

]
=

∑
16j6km,i=in,m(j)

E

[
M2

tni−1

(
Mtmj

−Mtmj−1

)2
]
,

If we combine the last three displays, we get

E
[
(Nn

T −Nm
T )2] = E

 ∑
16j6km,i=in,m(j)

(
Mtni−1

−Mtmj−1

)2 (
Mtmj

−Mtmj−1

)2

 .
Using the Cauchy-Schwarz inequality, we then have

E
[
(Nn

T −Nm
T )2] 6E

[
sup

16j6km,i=in,m(j)

(
Mtni−1

−Mtmj−1

)4
]1/2

× E

( ∑
16j6km

(
Mtmj

−Mm
tmj−1

)2
)2
1/2

.

By the continuity of sample paths (together with the fact that the mesh of our subdi-
visions tends to 0 ) and dominated convergence, we have

lim
n,m→∞,n6m

E

[
sup

16j6km,i=in,m(j)

(
Mtni−1

−Mtmj−1

)4
]

= 0.

15



1.3 Martingale

To complete the proof of the lemma, it is then enough to prove the existence of a finite
constant C such that, for every m,

E

( ∑
16j6km

(
Mtmj

−Mtmj−1

)2
)2
 6 C.

Let A be a constant such that |Mt| 6 A for every t > 0. Expanding the square and
using Proposition 3.14 twice, we have

E

( ∑
16j6km

(
Mtmj

−Mtmj−1

)2
)2


= E

[ ∑
16j6km

(
Mtmj

−Mtmj−1

)4
]

+ 2E

[ ∑
16j<k6km

(
Mtmj

−Mtmj−1

)2 (
Mtmk

−Mtmk−1

)2
]

6 4A2E

[ ∑
16j6km

(
Mtmj

−Mtmj−1

)2
]

+ 2
km−1∑
j=1

E

[(
Mtmj

−Mtmj−1

)2

E

[
km∑

k=j+1

(
Mtmk

−Mtmk−1

)2

| Ftmj

]]

= 4A2E

[ ∑
16j6km

(
Mtmj

−Mtmj−1

)2
]

+ 2
km−1∑
j=1

E

[(
Mtmj

−Mtmj−1

)2

E

[(
MT −Mtmj

)2

| Ftmj

]]

6 12A2E

[ ∑
16j6km

(
Mtmj

−Mtmj−1

)2
]

= 12A2E
[
(MT −M0)2]

6 48A4

Thanks to Doob’s inequality, we obtain our assertion.

We now return to the proof of the theorem.

Proof of Theorem 1.3.12. Assume that M is a continuous bounded martingale with M0 =
0. Note that

M2
t − 2Nn

t =
kn∑
i=1

(Mti∧t −Mti−1∧t)
2

are nondecreasing along the finite sequence (tni , 0 6 i 6 kn). By passing to the limit n→
∞ along the sequence (nk)k>1, we get that the sample paths of M2

t − 2Yt are continuous
and nondecreasing on [0, T ], and it is a martingale. It follows that we can define an
increasing process ATt such that ATt = M2

t −2Yt for every t ∈ [0, T ] and clearly M2
t −ATt is

16



a martingale. It is now standard to verify that ATt and AT
′

t are coincide when t 6 T ∧ T ′.
It follows that we can define an increasing process 〈M〉 such that 〈M〉t = ATt for every
t ∈ [0, T ] and every T > 1, a.s., and clearly M2

t − 〈M〉t is a martingale. By fact that Nn
T

converges in L2 to NT = 1
2

(
M2

T − ATT
)
, we get that

lim
n→∞

kn∑
j=1

(
Mtnj
−Mtnj−1

)2

= 〈M〉T

in L2. This completes the proof of the theorem in the case when M0 = 0 and M is
bounded.

Let us consider the general case. Writing Mt = M0 +mt, so that M2
t = M2

0 +2M0mt+
m2
t , and noting that M0mt is a continuous local martingale, we see that we may assume

that M0 = 0. We then set
τn = inf {t > 0 : |Mt| > n}

and we can apply the bounded case to the stopped martingales M τn . Set A[n] = 〈M τn〉.
The uniqueness part of the theorem shows that the processes A

[n+1]
t∧τn and A

[n]
t are indistin-

guishable. It follows that there exists an increasing process A such that, for every n, the
processes At∧τn and A

[n]
t are indistinguishable. By construction, M2

t∧τn − At∧τn is a mar-
tingale for every n, which precisely implies that M2

t −At is a continuous local martingale.
We take 〈M〉t = At, which completes the proof of the existence part of the theorem.

Finally, to get (1.8), it suffices to consider the case M0 = 0. The bounded case then
shows that (1.8) holds if M and 〈M〉t are replaced respectively by M τn and 〈M〉t∧τn (even
with convergence in L2 ). Then it is enough to observe that, for every t > 0, P (t 6 τn)
converges to 1 when n→∞.

1.3.3 Some applications

For an example of a discrete martingale, let Ω = [0, 1],P Lebesgue measure, and f an
integrable function on [0, 1]. Let Fn be the σ-field generated by the sets

{[k/2n, (k + 1)/2n) , k = 0, 1, . . . , 2n − 1} .

Let fn = E [f | Fn]. If I is an interval in Fn, shows that

fn(x) =
1

|I|

ˆ
I

f(y)dy if x ∈ I.

fn is a particular example of what is known as a dyadic martingale. Of course, [0, 1]
could be replaced by any interval as long as we normalize so that the total mass of
the interval is 1. We could also divide cubes in Rd into 2d subcubes at each step and
define fn analogously. Such martingales are called dyadic martingales. In fact, we could
replace Lebesgue measure by any finite measure µ, and instead of decomposing into equal
subcubes, we could use any nested partition of sets we like, provided none of these sets
had µ measure 0.

Exercise 1.3.1. Show that the martingale convergence theorem implies that fn → f , a.e.

17



1.3 Martingale

The martingale convergence theorem also provides the basis of the Calderón-Zygmund
lemma. We give the standard proof, phrased in martingale language.

Lemma 1.3.14 (Calderón-Zygmund). Let f > 0 be integrable. Let α > 0. There exists a
closed set F and countably many pairwise disjoint open cubes Qi such that |F c∆ ∪i Qi| =
0, f 6 α a.e. on F , and for each i,

α 6
1

|Qi|

ˆ
Qi

f 6 2dα.

Moreover,

|F c| 6 1

α

ˆ
f.

Proof. First of all, note that the last assertion is a consequence of (4.9), since (4.9) implies
|Qi| 6

´
Qi
f/α. Summing over i then gives |∪iQi| 6

´
∪2Q2

f/α 6
´
f/α.

Suppose next that R is a cube with |R|−1
´
R
f < α/2 and look at the dyadic mar-

tingale fn = E [f | Fn], where Fn is the partition of R into 2nd equal cubes. Let
T = inf {n : fn > α}. Note by our assumption on R that T > 0. For each n, (T = n) is
the union of cubes in Fn, and the boundary of (T = n) has measure 0 . Let

F c =
⋃
n

(int(T = n)).

Then F is closed. If n < T , then fn 6 α. By the martingale convergence theorem,
on (T = ∞) we have f = limn fn 6 α. Since F differs from the set (T = ∞) =
(T <∞)c = (∪n(T = n))c by a set of measure 0 , then f 6 α a.e. on F .

If Q is one of the cubes in Fn contained in (T = n) and x ∈ int(Q), then

1

|Q|

ˆ
Q

f = fn(x) > α.

By our definition of T, fn−1(x) 6 α. Let Q′ be the element of Fn−1 containing Q.
Then since |Q′| = 2d|Q|,

1

|Q|

ˆ
Q

f 6
2d

|Q′|

ˆ
Q′
f 6 2dα.

Finally, take n0 large enough so that ‖f‖1/2
n0d < α/2. We will take each cube Rj

that has side length 2n0 and vertices at integer multiples of 2n0 and decompose Rj into
Fj and Qj

i as above. If we then let F = ∪jFj, we have our result.

We already observed that as a consequence of Kolmogorov’s continuity theorem, the
Brownian paths are α-Hölder continuous for every α ∈

(
0, 1

2

)
. The next proposition,

which is known as the law of iterated logarithm shows in particular that Brownian paths
are not 1

2
-Hölder continuous.
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Theorem 1.3.15 (law of iterated logarithm). Let (Bt)t>0 be a Brownian motion. For
s > 0,

P

lim inf
t→0

Bt+s −Bs√
2t log log 1

t

= −1, lim sup
t→0

Bt+s −Bs√
2t log log 1

t

= 1

 = 1.

Proof. Thanks to the symmetry and invariance by translation of the Brownian motion, it
suffices to show that:

P

lim sup
t→0

Bt√
2t log log 1

t

= 1

 = 1.

Let us first prove that

P

lim sup
t→0

Bt√
2t log log 1

t

6 1

 = 1.

Let us denote h(t) =
√

2t log log 1
t
. Let α, β > 0, from Doob’s maximal inequality applied

to the martingale
(
eαBt−

α2

2
t
)
t>0

, we have for t > 0:

P

(
sup

06s6t

(
Bs −

α

2
s
)
> β

)
= P

(
sup

06s6t
eαBs−

α2

2
s > eαβ

)
6 e−αβ.

Let now θ, δ ∈ (0, 1). Using the previous inequality for every n ∈ N with t = θn, α =
(1+δ)h(θn)

θn
, β = 1

2
h(θn), yields when n→ +∞,

P

(
sup

06s6θn

(
Bs −

(1 + δ)h(θn)

2θn
s

)
>

1

2
h(θn)

)
= O

(
1

n1+δ

)
.

Therefore from Borel-Cantelli lemma, for almost every ω ∈ Ω, we may find N(ω) ∈ N
such that for n > N(ω),

sup
06s6θn

(
Bs(ω)− (1 + δ)h(θn)

2θn
s

)
6

1

2
h(θn).

But,

sup
06s6θn

(
Bs(ω)− (1 + δ)h(θn)

2θn
s

)
6

1

2
h(θn)

implies that for θn+1 6 t 6 θn,

Bt(ω) 6 sup
06s6θn

Bs(ω) 6
1

2
(2 + δ)h(θn) 6

(2 + δ)h(t)

2
√
θ

.

We conclude:

P

lim sup
t→0

Bt√
2t log log 1

t

6
2 + δ

2
√
θ

 = 1.
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1.3 Martingale

Letting now θ → 1 and δ → 0 yields

P

lim sup
t→0

Bt√
2t log log 1

t

6 1

 = 1.

Let us now prove that

P

lim sup
t→0

Bt√
2t log log 1

t

> 1

 = 1.

Let θ ∈ (0, 1). For n ∈ N, we denote

An =
{
ω,Bθn(ω)−Bθn+1(ω) > (1−

√
θ)h(θn)

}
.

Let us prove that
∑

P(An) = +∞. The basic inequality

ˆ +∞

a

e−
u2

2 du >
a

1 + a2
e−

a2

2 ,

implies

P(An) =
1√
2π

ˆ +∞

an

e−
u2

2 du >
an

1 + a2
n

e−
a2n
2 ,

with

an =
(1−

√
θ)h(θn)

θn/2
√

1− θ
.

When n→ +∞,

an
1 + a2

n

e−
a2n
2 = O

(
1

n
1+θ−2

√
θ

1−θ

)
,

therefore, ∑
P(An) = +∞.

As a consequence of the independence of the Brownian increments and of Borel-Cantelli
lemma, the event

Bθn −Bθn+1 > (1−
√
θ)h(θn)

will occur almost surely for infinitely many n’s. But, thanks to the first part of the proof,
for almost every ω, we may find N(ω) such that for n > N(ω),

Bθn+1 > −2h(θn+1) > −2
√
θh(θn).

Thus, almost surely, the event Bθn > h(θn)(1 − 3
√
θ) will occur for infinitely many

n’s. This implies

P

lim sup
t→0

Bt√
2t log log 1

t

> 1− 3
√
θ

 = 1.
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We finally get

P

lim sup
t→0

Bt√
2t log log 1

t

> 1

 = 1.

by letting θ → 0.

As a straightforward consequence, we may observe that the time inversion invariance
property of Brownian motion implies:

Corollary 1.3.16. Let (Bt)t>0 be a standard Brownian motion.

P

(
lim inf
t→+∞

Bt√
2t log log t

= −1, lim sup
t→+∞

Bt√
2t log log t

= 1

)
= 1.

1.4 Stochastic Integral

From now on, unless stated otherwise, our processes have continuous paths.
Let Mt be a square integrable martingale, 0 = t0 6 t1 6 · · · 6 tn = T and Hs(ω) =∑n−1
i=0 Fi(ω)1(ti,ti+1](s), where Fi is bounded and Fti-measurable. Define

ˆ t

0

HsdMs :=
n−1∑
i=0

Fi(Mt∧ti+1
−Mt∧ti).

Then

Lemma 1.4.1. t 7→
´ t

0
HsdMs is a L2-martingale. Moreover, we have the following Itô

isometry:

E

(ˆ t

0

HsdMs

)2

= E

ˆ t

0

H2
sd〈M〉s. (1.9)

Proof.

E

(ˆ 1

0

HsdMs

)2

=E
∑
i

H2
ti

(Mti+1
−Mti)

2 + 2E
∑
i<j

HtiHtj(Mti+1
−Mti)(Mtj+1

−Mtj)

= : I1 + I2.

I1 =
∑
i

EE
(
H2
ti

(Mti+1
−Mti)

2
∣∣Fti) =

∑
i

E
[
H2
ti
E
(
(Mti+1

−Mti)
2
∣∣Fti)]

=
∑
i

EH2
ti

(〈M〉ti+1
− 〈M〉ti) = E

ˆ 1

0

H2
sd〈M〉s,

I2 = 2
∑
i<j

E
[
HtiHtj(Mti+1

−Mti)E
(
(Mtj+1

−Mtj)
∣∣Ftj)] = 0.
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1.5 Itô’s formula and its applications

Therefore,

E

(ˆ 1

0

HsdMs

)2

= E

ˆ 1

0

H2
sd〈M〉s.

t 7→
´ t

0
HsdWs =

∑n−1
i=0 Hti(Wt∧ti+1

−Wt∧ti) is a continuous martingale.

We then can use this to extend the above construction to more general Hs satisfying´ t
0
H2
sd〈M〉s <∞ by taking limits in L2. For general continuous local martingale, we can

employ standard localization argument to define the above integral. For Xt = Mt +At, a
semimartingale,

´ t
0
HsdXs is given by

ˆ t

0

HsdXs =

ˆ t

0

HsdMs +

ˆ t

0

HsdAs,

where the first integral on the right is a stochastic integral and the second integral on the
right is a Riemann-Stieltjes integral.

Proposition 1.4.2. 〈ˆ ·
0

HsdMs

〉
t

=

ˆ t

0

H2
sd〈M〉s.

Let Nt =
´ t

0
HsdMs ˆ t

0

KsdNs =

ˆ t

0

KsHsdMs

1.5 Itô’s formula and its applications

1.5.1 Applications in martingale theory

We list some important results in stochastic calculus.

Theorem 1.5.1 (Itô’s formula). If each X i
t (for each i ∈ 1, · · · d}) is a continuous semi-

martingale and f ∈ C2(Rd), then

f (Xt)− f (X0)

=

ˆ t

0

d∑
i=1

∂if (Xs) dX i
s +

1

2

ˆ t

0

d∑
i,j=1

∂ijf (Xs) d
〈
X i, Xj

〉
s

(1.10)

(see [Hua01, Theorem 13.5]).
It is often useful to use the language of Stratonovitch’s integration to study stochastic

differential equations because the Itô’s formula takes a much nicer form. If Mt is an Ft-
adapted real valued local martingale and if Ht is an Ft-adapted continuous semimartingale

satisfying P
(´ T

0
Hsd〈M〉s <∞

)
= 1, then by definition the Stratonovitch integral of Ht

with respect to Mt is defined as

ˆ T

0

Ht ◦ dMt =

ˆ T

0

HtdMt +
1

2
〈H,M〉T .
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By using Stratonovitch integral instead of Itô’s, the Itô formula reduces to the classical
change of variable formula.

Theorem 1.5.2. Let Mt be a d–dimensional continuous semimartingale. Let now f be a
C2 function. We have

f(Mt) = f(M0) +

ˆ t

0

∂if(Xs) ◦ dM i
s, t > 0.

Theorem 1.5.3 (Burkholder-Davis-Gundy inequalities). If Mt is a continuous martingale
with M0 = 0, and τ is a stopping time, then

E sup
t∈[0,τ ]

|Mt|p �p E〈M〉p/2τ , p ∈ (0,∞) (1.11)

Proof. Step 1: for any p > 2, by Itô’s formula

|Mτ |p = p

ˆ τ

0

sgn(Mt)|Mt|p−2MtdMt +
p(p− 1)

2

ˆ T

0

|Mt|p−2d〈M〉t;

By Doob’s inequality and Hölder’s inequality,

E(M∗
τ )p .pE|Mτ |p .p E((M∗

τ )p−2〈M〉τ )

6(E(M∗
τ )p)1− 2

p (E〈M〉
p
2
τ )

2
p ;

Step 2: using Lenglart’s domination inequality, we can get the proof for the case p ∈ (0, 2).
We proceed now to the proof of the left hand side inequality. We have,

M2
t = 〈M〉t + 2

ˆ t

0

MsdMs.

Therefore, we get

E
(
〈M〉

p
2
T

)
. E(M∗

T )p + E

(
sup

06t6T

∣∣∣∣ˆ t

0

MsdMs

∣∣∣∣p/2
)
.

By using the previous argument, we now have

2
p
2 E

(
sup

06t6T

∣∣∣∣ˆ t

0

MsdMs

∣∣∣∣p/2
)
6 CE

((ˆ T

0

M2
s d〈M〉s

)p/4)

6CE
(

(M∗
T )p/2〈M〉p/4T

)
6 C (E(M∗

T )p)1/2
(
E〈M〉p/2T

)1/2

6ε′E(M∗
T )p + Cε′E〈M〉p/2T 6 ε.

As a conclusion, we obtained that d

Proposition 1.5.4 (Lenglart). Let Xt be a positive adapted right-continuous process and
At be an increasing process. Assume that for every bounded stopping time τ , E(Xτ |
F0) 6 E(Aτ | F0). Then, for every κ ∈ (0, 1),

E (X∗T )κ 6
2− κ
1− κ

E (AκT ) .
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1.5 Itô’s formula and its applications

We shall use this lemma to prove the following Another approach to proving (1.11) is
utilizing ”good-λ” inequality (cf. [RY13]).

Theorem 1.5.5 (Lévy’s theorem). If Xt is a d-dimensional F -adapted process, each of
whose coordinates is a continuous local martingale, and 〈X i, Xj〉t = δijt, then Xt is a
d-dimensional F -Brownian motion.

Proof. Let ξ ∈ Rd. Then ξ ·Xt is a continuous local martingale with quadratic variation
〈ξ ·X〉t = |ξ|2t. By Itô’s formula, exp(iξ ·Xt+

1
2
|ξ|2t) is a continuous local martingale. This

complex continuous local martingale is bounded on every finite interval and is therefore
a (true) martingale, in the sense that its real and imaginary parts are both martingales.
Hence, for every s < t,

E

[
exp

(
iξ ·Xt +

1

2
|ξ|2t

)∣∣∣∣ Fs] = exp

(
iξ ·Xs +

1

2
|ξ|2s

)
Thus,

E [exp (iξ · (Xt −Xs))| Fs] = exp

(
1

2
|ξ|2(t− s)

)
.

This implies Xt −Xs is independent with Fs and Xt −Xs ∼ N (0, t− s).
Finally, X is adapted and has independent increments with respect to the filtration

F so that X is a s-dimensional F -Brownian motion.

LetMt be a continuous local martingale withM0 = 0. Set E (M)t := exp(Mt−〈M〉t/2).

Lemma 1.5.6. E (M)t is a continuous local martingale, and is the unique solution to

dXt = XtdMt, X0 = 1.

Theorem 1.5.7 (Girsanov theorem). Let Xt and Mt be two continuous local martingales
under P with M0 = 0 P-a.s.. Assume that E (M)t is a martingale, we define a new
probability measure Q by setting the restriction of dQ/dP to Ft to be E (M)t, then Xt −
〈X,M〉t is a martingale under Q and the quadratic variation of Xt is the same under P
and Q.

Proof. By localization, we can assume X is a martingale. Set Yt = Xt − 〈X,M〉t. We
only need to verify that YtE (M)t is a martingale under P. By Itô’s formula,

dYtE (M)t =E (M)tdXt − E (M)td〈X,M〉t + YtE (M)tdMt + d〈X,E (M)〉t
=E (M)tdXt + YtE (M)tdMt.

Therefore, YtE (M)t is a martingale, which implies

EQ(Yt;A) = EQ(Ys;A), ∀A ∈ Fs,

i.e.
EQ(Yt|Fs) = Ys.
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Theorem 1.5.8 (Dambis–Dubins–Schwarz). Let M be a continuous local martingale such
that 〈M〉∞ =∞. There exists a Brownian motion B such that

Mt = B〈M〉t .

The proof of Dambis–Dubins–Schwarz’s Theorem can also be found in [Hua01].

Theorem 1.5.9 (Exponential martingale inequality). Let Mt be a continuous martingale,
τ a bounded stopping time, then

P

(
sup
t6τ
|Mt| > λ & 〈M〉τ 6 µ

)
6 2e−

λ2

2µ .

We need

Lemma 1.5.10. Let W be a 1-dimensional Brownian motion. Then for any λ, t > 0

P

(
sup
s∈[0,t]

|Ws| > λ

)
6 2e−

λ2

2t

Proof. Let Xt = ea|Wt| with a > 0. Since x 7→ ea|x| is a convex function, Xt is a sub-
martingale. By Doob’s inequality (see Theorem 1.3.5), we have

P (W ∗
t > λ) = P

(
X∗t > eaλ

)
6 e−aλEXt =

e−aλ

πt

ˆ ∞
0

eax−
x2

2t dx = 2e
a2t
2
−aλ.

Taking a = λ/t, we obtain

P (W ∗
t > λ) 6 2e−

λ2

2t .

Proof of Theorem 1.5.9. By Theorem 1.5.8, Mt is a time change of a Brownian motion
Wt. So the desired probability is bounded by

P

(
sup
t6T
|Wt| > λ & 〈W 〉T < µ

)
,

where T is a stopping time. Since 〈W 〉T = T , the probability above is in turn bounded
by

P

(
sup
t6µ
|Wt| > λ

)
6 2e−

λ2

2µ .
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1.5 Itô’s formula and its applications

1.5.2 Applications in PDEs

In chapter 3, we will consider the following stochastic differential equation (SDE):

Xx
t = x+

ˆ t

0

σ(Xx
s )dWs +

ˆ t

0

b(Xx
s )ds, x ∈ Rd.

Here W is a n-dimensional BM, and σ : Rd → Rd×n and b : Rd → Rd.
In chapter 4, we will study the following Poisson equation:

λu− Lu = f,

where L = 1
2
σikσjk∂ij + bi∂i.

The relationship between these two subjects can be easily established by Itô’s formula:

Theorem 1.5.11. Suppose u is a C2
b function satisfying the above Poisson equation.

Then

u(x) = E

ˆ ∞
0

e−λtf (Xx
t ) dt

Proof. Applying Itô’s formula, we have du(Xx
t ) = dMt + Lu(Xx

t )dt. So

e−λtu (Xx
t )− u (x) =

ˆ t

0

e−λsdMs +

ˆ t

0

e−λsLu (Xx
s ) ds

− λ
ˆ t

0

e−λsu (Xx
s ) ds.

Taking expection, we get what we claimed.

Let us now let D be a nice bounded domain, e.g., a ball. Poisson’s equation in D
requires one to find a function u such that{

λu− Lu = f in D

u = 0 on ∂D,

where λ > 0. Here we can allow λ to be equal to 0. Recall that if L = ∆ (Xt is a Brownian
motion), then the time to exit D, namely, τD := inf{t : Xt /∈ D}, is finite almost surely.

Theorem 1.5.12. Suppose u is a solution to Poisson’s equation in a bounded domain D
that is C2 in D and continuous on D̄. Assume also that

E(τD <∞) = 1,

where τD = inf{t > 0 : Xx
t /∈ D}. Then

u(x) = E

ˆ τD

0

e−λsf (Xx
s ) ds.

Exercise 1.5.1. Prove Theorem 1.5.12.
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Chapter 2

Itô processes

Let at = 1
2
σtσ

T
t and

xt =

ˆ t

0

σs · dWs +

ˆ t

0

bsds. (2.1)

For simplicity, we always assume that a ∈ Sdδ .

2.1 Support theorem

The following result is a simplify version of Stroock-Varadhan’s support theorem, which
is taken from [Bas98].

Theorem 2.1.1 (Support theorem). Suppose σ, σ−1 and b are bounded, xt satisfies (2.1).
Suppose ϕ : [0, 1] → Rd is continuous with ϕ(0) = 0. Then for each ε > 0, there exists a
constant c > 0 depending only on ε, the modulus of continuity of ϕ, and the bounds on b,
σ and σ−1 such that

P

(
sup
t∈[0,1]

|xt − ϕ(t)| 6 ε

)
> c. (2.2)

This can be phrased as saying the graph of xt stays inside an ε-tube about ϕ.

To prove Theorem 2.1, we need some auxiliary lemmas.

By Lemma 1.5.10, there is a constant δ0 > 0 such that

inf
|x|61/3

P

(
sup
t∈[0,δ0]

|W x
t | 6 1

)
> 5/6. (2.3)

Lemma 2.1.2. Let W be a 1-dimensional Brownian motion. For any ε > 0 and T > 0,
there is a constant c(ε, T ) > 0 such that

P

(
sup
s∈[0,T ]

|Wt| 6 ε

)
> c(ε, T ).
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2.1 Support theorem

Proof. We assume T = 1. By the scaling property of Brownian motion (ε−1Wt
d
= Wε−2t),

we only need to show

P

(
sup

t∈[0,ε−2]

|Wt| 6 1

)
> c(ε) > 0.

It is easy to see that inf |x|61/3 P(|W x
δ1
| 6 1/3) > 1/3 (for some 0 < δ1 � 1), which together

with (2.3) implies that

inf
|x|61/3

P

(
sup
t∈[0,δ2]

|W x
t | 6 1, |W x

δ2
| 6 1/3

)
>

1

6
, δ2 = δ0 ∧ δ1 > 0.

By the Markov property of W ,

inf
|x|61/3

P

(
sup

t∈[0,kδ2]

|W x
t | 6 1, |W x

δ2
| 6 1/3

)
> 6−k.

Letting k = [ε−2δ−1
2 ] + 1, we get

P

(
sup

t∈[0,ε−2]

|Wt| 6 1

)
> inf
|x|61/3

P

(
sup

t∈[0,ε−2]

|W x
t | 6 1, |W x

δ2
| 6 1/3

)
> 6−ε

−2δ−1
2 −1 =: c(ε) > 0.

Lemma 2.1.3. Suppose X0 = 0, Xt = Mt + At is a continuous semimartingale with
dAt/dt and d〈M〉t/dt bounded above by N1 and d〈M〉t/dt bounded below by N2 > 0. If
ε > 0 and T > 0, then

P

(
sup
t∈[0,T ]

|Xt| < ε

)
> c(ε, T,N1, N2) > 0.

Proof. Let τ(t) = inf{u > 0 : 〈M〉u > t}. Then τ(t) � t, and Bt = Mτ(t) is a Brownian

motion due to Lemma 2.1.2. Then Yt := Xτ(t) = Bt +
´ t

0
bsds with |bs| 6 C(N1, N2). Our

assertion will follow if we can show

P

(
sup
t∈[0,T ]

|Yt| 6 ε

)
> c > 0.

We now use Girsanov’s theorem. Define a probability measure Q by

dQ/dP = ET (−b) := exp

(
−
ˆ T

0

bsdBs −
1

2

ˆ T

0

|bs|2ds

)
on FT .

By Girsanov’s theorem, under Q, Yt is a Brownian motion. Therefore,

Q (A) > c > 0, A =

{
sup
t∈[0,T ]

|Yt| 6 ε

}
.

By Hölder’s inequqlity,

c 6 Q(A) 6 EP(ET (−b)1A) 6 [EPE2
T (−b)]

1
2 [P(A)]

1
2 .

Since b is bounded, it is easy to verify that EPE2
T (−b) <∞. This yields P(A) > c > 0.
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Now we are on the point to give

Proof of Theorem 2.1. Step 1: We first consider the case and ϕ = 0. Let z ∈ ∂Bε/4.
Applying Itô’s formula with f(x) = |x− z|2 and setting yt = |xt − z|2, then

yt = z2 +

ˆ t

0

(xs − z) · dxs +

ˆ t

0

trasds, 〈y〉t =

ˆ t

0

(xs − z)Tas(xs − z)ds � yt

〈y〉t > cε2 before τ := inf{s > 0 : |ys− y0| > (ε/8)2}. If we set zt equal to yt for t 6 τ and
equal to some Brownian motion for t larger than this stopping time, then Lemma 2.1.3
applies (for zt) and

P

(
sup
t∈[0,T ]

|xt| 6 ε

)
> P

(
sup
t∈[0,T ]

|yt − y0| 6 (ε/8)2

)
= P

(
sup
t∈[0,T ]

|zt − z0| 6 (ε/8)2

)
> 0.

Step 2: Without loss of generality, we may assume ϕ is differentiable with a derivative
bounded by a constant. Define a new probability measure Q by

dQ/dP = exp

(
−
ˆ T

0

ϕ′(s)σ−1
s dWs −

1

2

ˆ T

0

|ϕ′(s)σ−1
s |2ds

)
on FT .

Noting that 〈
−
ˆ ·

0

ϕ′(s)σ−1
s dWs, x

〉
t

=

ˆ t

0

ϕ′(s)ds = −ϕ(t).

So by the Girsanov theorem, under Q each component of xt is a semimartingale and
nit := xit −

´ t
0
bisds− ϕi(t) is a martingale for each i = 1, · · · , d. Therefore,

Bt :=

ˆ t

0

σ−1
s dns

is a continuous local martingale with 〈Bi, Bj〉t = δijt under Q. Therefore Bt is a d-
dimensional Brownian motion udner Q. Since

xt − ϕ(t) =

ˆ t

0

σsdBs +

ˆ t

0

bsds,

by Step 1, Q(supt∈[0,T ] |xt − ϕ(t)| < ε) > c > 0. similarly to the last paragraph of the
proof for Lemma 2.1.3, we conclude

P

(
sup
t∈[0,T ]

|xt − ϕ(t)| < ε

)
> c > 0.
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2.2 ABP estimate and Generalized Itô’s formula

2.2 ABP estimate and Generalized Itô’s formula

Below we will use the an analytic result due to Alexsandroff to study the Itô process given
by (2.1). For simplicity, in this section, we assume that b = 0.

Proposition 2.2.1 (Alexsandroff). Let f be a nonnegative function on B2 such that fd

has finite integral over B2 and f = 0 outside B2. Then there exists a nonpositive convex
function u on B2 such that

(i) for any x ∈ B2,

|u(x)| 6 C

(ˆ
B2

fddx

) 1
d

; (2.4)

(ii) for any constant a ∈ Sd+, ε > 0 and x ∈ B2,

aij∂ijuε(x) > d
d
√

det a fε(x), (2.5)

where vε = v ∗ ζε and ζε is a standard mollifier.

(2.4) is called Alexandroff–Bakelman–Pucci estimate in PDE literature.

In Appendix B.1, we provide the proof for Proposition 2.2.1 based on the very initial
knowledge of the solvability of the following Monge–Ampère equations and estimates of
its solutions:

det∇2u(x) = f in D, (2.6)

which, actually, after a long development became also one of the cornerstones of the theory
of fully nonlinear elliptic partial differential equations.

Set
τR(x) = inf {t > 0 : x+ xt /∈ BR} .

Proposition 2.2.1 implies

Theorem 2.2.2 (Krylov [Kry09]). There is a constant C(d) such that for any R > 0,
and nonnegative Borel f given on Rd, we have

E

ˆ τR(x)

0

f (x+ xt)
d
√

det at dt 6 C(d)R‖f‖Ld(BR). (2.7)

Proof. By scaling, we only need to consider the case R = 1. We can assume f ∈ C∞c (B1).
By Itô’s formula,

uε(x+ xt∧τ1(x))− uε(x) =

ˆ t∧τ1(x)

0

aijs ∂ijuε(x+ xs)ds+mt∧τ1(x)

Taking expectation, letting t→∞ and using Proposition 2.2.1, we get

ˆ τ1(x)

0

d
√

det at fε(x+ xt)dt 6 d−1

ˆ τ1(x)

0

aijt ∂ijuε(x+ xt)dt
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6
2

d
sup
x∈B1

|u(x)| 6 C(d)‖f‖Ld(B2) = C(d)‖f‖Ld(B1).

Letting ε→ 0, we obtain our assertion.

We should point out that here we do not need to assume a ∈ Sdδ .

Remark 2.2.3. (i) (2.7) implies that if xt is a Itô’s process given by (2.1) with σ non-
degenerate, then the process t 7→

´ t
0
f(xs)ds is well-defined.

(ii) Suppose xt is a Itô process given by (2.1), a ∈ Sdδ and b satisfying |bt| 6 b(xt) with
some b ∈ Ld. In this case, Krylov [Kry21a] also proved (2.7) with ‖f‖Ld(D) replaced
by ‖f‖Ld−ε(D) for some ε = ε(d, δ, ‖b‖) > 0 .

Theorem 2.2.2 as many results below admits a natural generalization with conditional
expectations. This generalization is obtained by tedious and not informative repeating
the proof with obvious changes. We mean the following which we call the conditional
version of Theorem 2.2.2 . Let γ be a finite stopping time, then

E

[ˆ τR(x)

γ

f (x+ xt)
d
√

det at 1{γ6τR(x)} dt
∣∣∣Fγ] 6 C(d)R‖f‖Ld(BR). (2.8)

Theorem 2.2.4. There are constants C, µ depending only on d, such that

E exp

(
µτR(x)

δR2

)
6 C, ∀R ∈ (0,∞) and x ∈ BR. (2.9)

In particular, for each λ > 0,

P (τR(x) > λ) 6 C exp

(
− µλ

δR2

)
. (2.10)

Lemma 2.2.5.

EτR(x)n 6 n!(CR2/δ)n.

Proof. We can assume x = 0.

We claim that
In(t) := E

(
[τR − t]n+|Ft

)
6 n!(CR2/δ)n. (2.11)

Of course, (2.11) implies our desired result.
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2.2 ABP estimate and Generalized Itô’s formula

When n = 1, (2.8) implies (2.11). If our assertion is true for a given n, then

In+1(t) =(n+ 1)!E

(ˆ
1t<t1<···<tn+1<τRdt1 · · · dtn+1

∣∣∣Ft)
=(n+ 1)!

ˆ
dt1 · · · tn+1E

(
1t<t1<···<tn<τR1tn<tn+1<τR

∣∣∣Ft)
=(n+ 1)!

ˆ
dt1 · · · tn+1E

[
1t<t1<···<tn<τRE

(
1tn<tn+1<τR

∣∣∣Ftn) ∣∣∣Ft]
=(n+ 1)E

[
n!

ˆ
1t<t1<···<tn<τRdt1 · · · tn

ˆ
E
(
1tn<tn+1<τR

∣∣∣Ftn) dtn+1

∣∣∣Ft]
=(n+ 1)E

{
[τR − t]n+E

[ˆ τR

tn

1BR(xtn+1)dtn+1

∣∣Ftn] ∣∣∣Ft}
(2.8)

6 (n+ 1)Cδ−1R2In(t)
(2.11)

6 (n+ 1)!(CR2/δ)n+1.

So we get what we desired.

Exercise 2.2.1. Let B be a one-dimensional BM. Let I = (−1, 1). Prove that

EτnI 6 Cnn!.

Using this to give another proof for (2.9).

Corollary 2.2.4 basically says that τR is smaller than a constant times R2. We want
to show that in a sense the converse is also true: R2 is basically smaller than a constant
times τR.

Lemma 2.2.6. There exists C depending only on d such that

P(τR/R
2 6 t) 6 Cδ−1t, ∀t, R > 0. (2.12)

Proof. We only need to prove the case R = 1. Let φ be a C2 function that is zero at 0,
one on ∂B1, with ∂ijφ bounded by a constant. By Itô’s formula

dφ(xt) = ∇φ(xt) · σtdWt + aijt ∂ijφ(xt)dt,

which yields that

φ(xt∧τ1) = E

ˆ t∧τ1

0

aijs ∂ijφ(xs)ds 6 Cδ−1t.

Since φ(xt∧τ1) > 1{τ16t}, we get P(τ1 6 t) 6 Cδ−1t.

Lemma 2.2.7. There is a constant R = R(d, δ) such that

E exp(−τR) 6 1/2.
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Proof. Let X be a non-negative random variable, and let F : R+ → R be a decreasing
function with F (∞) = 0. Then

EF (X) = −
ˆ ∞

0

F ′(t)P(X 6 t)dt,

due to Fubini’s theorem. Set X = τR and F (t) = e−t. Then

Ee−τR =

ˆ ∞
0

e−tP(τR 6 t)dt 6
ˆ ∞

0

e−t[1 ∧ (Cδ−1R−2t)]dt 6 Cδ−1R−2.

We set R =
√

2C/δ.

Exercise 2.2.2. For any R ∈ (0,∞)

E exp
(
− (R/R)2 τR

)
6 1/2. (2.13)

Theorem 2.2.8. For any κ ∈ (0, 1), R ∈ (0,∞), x ∈ BκR, and λ > 0,

E exp (−λτR(x)) 6 2e−
√
λ(1−κ)R/K , (2.14)

where K = R/ log 2.

Proof. Recall that τR(x) is the first exit time of x+xt from BR. Let τ ′R(x) be the first exit
time of x+xt from B(1−κ)R(x). It follows that in the proof of , we may assume that κ = 0
and x = 0. Then, as usual we may assume that R. In that case take N , to be specified
later, and introduce τ k, k = 1, · · · , N , as the first exit time of xt from Bk/N . Also set γk

be the first exit times of xt from BN−1(xτk−1) after τ k−1 (τ k−1 6 γk 6 τ k). obviously,

τ1 > (γ1 − τ0) + (γ2 − τ 1) + · · ·+ (γN − τN−1).

By the conditional version of (2.13),

E
{

exp
[
−R2N2(γk − τ k−1)

]
|Fτk−1

}
6 1/2.

Therefore,

E
[
exp

(
−R2N2τ1

)]
6E

[
N∏
k=1

exp
(
−R2N2(γk − τ k−1)

)]

6E

{
N−1∏
k=1

exp
(
−R2N2(γk − τ k−1)

)
E
[
exp

(
−R2N2(γN − τN−1)

) ∣∣∣FτN−1

]}

6
1

2
E

[
N−1∏
k=1

exp
(
−R2N2(γk − τ k−1)

)]
6 · · · 6 (1/2)N .

(2.15)

Choosing N = [
√
λ/R], we get (2.14).
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2.2 ABP estimate and Generalized Itô’s formula

Exercise 2.2.3. For any R, t > 0,

P
(
τR(x) 6 tR2

)
6 2 exp

(
−β(1− κ)2

t

)
, (2.16)

where β = β(R) ∈ (0, 1).

The above estimates for first exit times have many important applications.

Proposition 2.2.9. For any κ ∈ (0, 1) there is a function q(γ), γ ∈ (0, 1), depending only
on d, δ, κ and naturally, also on γ, such that for any R ∈ (0,∞), x ∈ BκR, and closed
Γ ⊂ BR satisfying |Γ| > γ |BR| we have

P (σΓ(x) 6 τR(x)) > q(γ),

where σΓ(x) is the first time the process x+ xt hits Γ. Furthermore, q(γ)→ 1 as γ ↑ 1.

Proof. By using scaling we reduce the general case to the one in which R = 1. In that
case for any ε > 0 we have

P (σΓ(x) > τ1(x)) 6 P

(
τ1(x) =

ˆ τ1(x)

0

1B1\Γ (x+ xt) dt

)

6 P (τ1(x) 6 ε) + ε−1E

ˆ τ1(x)

0

IB1\Γ (x+ xt) dt.

In light of Theorem 2.2.2, we can estimate the right-hand side and then obtain

P (σΓ(x) > τ1(x)) 6 2e−C/ε + Cε−1 |B1\Γ|1/d

6 2e−C/ε + Cε−1(1− γ)1/d

where the constants C depend only on d, δ, κ. By denoting

q(γ) = 1− inf
ε>0

(
2e−C/ε + Cε−1(1− γ)1/d

)
.

Note that in the above result, we have no assumption on the shape of the set Γ.

Exercise 2.2.4. For any κ ∈ (0, 1), R ∈ (0,∞). For any x ∈ B1 and BκR(y) ⊆ BR, we
have

P
(
σBκR(y)(x) < τR(x)

)
> ζ(κ) > 0,

where ζ(κ) > 0 depends only on d, δ, and naturally, also on κ.

Hint: Using support theorem.

Theorem 2.2.10. Let p > d. Then there exists constants C depending only on d, δ, such
that for any λ > 0 and Borel nonnegative f given on Rd we have

E

ˆ ∞
0

e−λtf (Xt) dt 6 Cλ
d
2p
−1 ‖f‖p . (2.17)
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Proof. Let γ be a stopping time and γ′ be the first exit time of xt from BR(xγ) after γ.
By the conditional version of (2.14),

E
[
exp (−λ(γ′ − γ))

∣∣∣Fγ] 6 2e−
√
λR/K .

Choosing R = K/
√
λ, then

E
[
exp (−λ(γ′ − γ))

∣∣∣Fγ] 6 2/e < 1.

Let τ 0 = 0 and τ k be the first exit time of xt from BR(xτk−1) after τ k−1. As the proof for
(2.15), we have

Ee−λτ
k

= E
k∏
i=1

e−λ(τk−τk−1) 6 (2/e)k. (2.18)

If (2.18) holds, then

E

ˆ ∞
0

e−λtf (xt) dt 6
∞∑
k=1

E

[
e−λτ

k−1

E

(ˆ τk

τk−1

f (xt) dt
∣∣∣Fτk−1

)]
(2.7)

6
∞∑
k=1

E
(
Cδ−1R‖f‖Ld(BR(x

τk−1 ))e
−λτk−1

)
6Cδ−1R2− d

p‖f‖p
∞∑
k=0

Ee−λτ
k

6 Cδ−1‖f‖p
∞∑
k=0

(2/e)k

6C‖f‖p/λ1−(d/2p).

Theorem 2.2.11 (Generalized Itô’s formula, see Krylov-[Kry09]). Let xt be a Itô process
given by (2.1). Suppose that a ∈ Sdδ and b are bounded, then for any u ∈ W 2,p

loc with p > d,
we have

u(xt)− u(x0) =

ˆ t

0

∇u(xs)σsdWs +

ˆ t

0

aijs ∂iju(xs)ds (2.19)

Proof. We only need to consider the case u ∈ W 2,d. Let η ∈ C∞c (B1) with
´
η = 1. Set

ηε(x) = ε−dη(x/ε) and uε = u ∗ ηε. By Itô’s formula,

uε(xt)− uε(x0) =

ˆ t

0

∇uε(xs)σsdWs +

ˆ t

0

aijs ∂ijuε(xs))ds. (2.20)

Fact: by Sobolev embedding theorem, we have

W 2,d ↪→ Cb; ‖∇u‖2d 6 C(‖∇2u‖Ld + ‖∇u‖Ld). (2.21)
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2.2 ABP estimate and Generalized Itô’s formula

Since u ∈ Cb, by letting ε→ 0, one sees the left-hand side of (2.20) goes to u(xt)−u(x0)
as ε→ 0. For the right-hand side of (2.20). By Doob’s maximal inequality

E sup
t∈[0,T ]

∣∣∣∣ˆ t

0

∇uε(xs)σsdWs −
ˆ t

0

∇uε′(xs)σsdWs

∣∣∣∣2
6CE

ˆ T

0

|∇uε −∇uε′ |2(xs)ds 6 C‖∇uε −∇uε′‖2
L2d

(2.21)

6 C‖uε − uε′‖W 2,d → 0, ε, ε′ → 0.

Similarly, we can also show that the second integral on the right-hand side of (2.20) also
converges to

´ t
0
aijs ∂iju(xs)ds

Remark 2.2.12. The above generalized Itô’s formula also holds for Itô process given by
(2.1), where a ∈ Sdδ , and b satisfying |bt| 6 b(xt) with b ∈ Ld.
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Chapter 3

Itô’s stocahstic differential equations

3.1 Strong solutions

One of the main object in this course is the following SDE:

dX i
t = σik(Xt)dW

k
t + bi(Xt)dt, X0 = ξ ∈ F0. (3.1)

Given (Ω,F ,P,F ,Wt), we say (3.1) has a pathwise solution if there exists a continuous
Ft-adapted process Xt satisfying (3.1). We say that we have pathwise uniqueness for
(3.1) if wheneverXt and Yt are two solutions, then there exists a setN such that P(N ) = 0
and for all ω /∈ N , we have Xt = Yt for all t.

3.1.1 Lipschitz conditions

Theorem 3.1.1 (Itô). Suppose σ and b are Lipschitz. Then there exists a unique pathwise
solution to the SDE (3.1) for any X0 ∈ L2(Ω,F0,P).

Proof. Let B denote the set of all continuous processes ξ that are adapted to the filtration
Ft and satisfy

‖ξ‖B :=

(
E sup
t∈[0,T ]

|ξt|2
)1/2

<∞.

Here T is a positive number which will be determined later. It is not hard to verify that
B is a Banach space. Define a map T on B by

(T (ξ))t := X0 +

ˆ t

0

σ(ξs) · dWs +

ˆ t

0

b(ξs)ds, t ∈ [0, T ].
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3.1 Strong solutions

By (1.11) (or Doob’s inequality) and Lipschitz condition on the coefficients,

‖T (ξ)− T (η)‖2
B = E sup

t∈[0,T ]

|T (ξ)t − T (η)t|2

62E sup
t∈[0,T ]

∣∣∣∣ˆ t

0

(σ(ξs)− σ(ηs))dWs

∣∣∣∣2 + 2E sup
t∈[0,T ]

∣∣∣∣ˆ t

0

(b(ξs)− b(ηs))ds
∣∣∣∣2

(1.11)

6 CE

ˆ T

0

|σ(ξs)− σ(ηs)|2ds+ CE

(ˆ T

0

|b(ξs)− b(ηs)|ds
)2

6C(T + T 2)E sup
t∈[0,T ]

|ξt − ηt|2 = C1(T + T 2)‖ξ − η‖2
B.

Choosing T > 0 sufficiently small such that C1(T + T 2) 6 1/2, then T is a Contraction
mapping on B. Banach fixed-point theorem yields that T has a unique fixed point, which
is the unique pathwise solution to (3.1). We can extend the same result to arbitrarily
time intervals.

3.1.2 Definitions of solutions

1. strong solution exists to (3.1): if given the Brownian motion Wt there exists a
process Xt satisfying (3.1) such that Xt is adapted to the filtration generated by
Wt.

2. weak solution exists to (3.1): if there exists (Ω,F ,P,F ;Xt,Wt) such that Wt is
a F -Brownian motion and the equation (3.1) holds.

3. weak uniqueness: if whenever (Ω,F ,P,F ;Xt,Wt) and (X,G,Q,G ;Yt, Bt) are
two weak solutions, then the laws of the processes X and Y are equal; Joint
uniqueness in law means the joint law of (X,W ) and (Y,B) are equal.

A fundamental result is

Theorem 3.1.2 (Yamada-Watanabe-Engelbert [Eng91]). The following two conditions
are equivalent.

(i) For every initial distribution, there exists a weak strong solution to (3.1) and the
solution to (3.1) is pathwise unique.

(ii) For every initial distribution, there exists a strong strong solution to (3.1) and the
solution to (3.1) is jointly unique in law.

If one (and therefore both) of these conditions is satisfied then every solution to (3.1) is
a strong solution.
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3.1.3 SDEs with Hölder drifts

For strong well-posedness, if the diffusion coefficient σ is non-degenerate, then the condi-
tion of b can be weakened.

Theorem 3.1.3 (Krylov [Kry21b]). Suppose that a ∈ Sdδ and ∇σ, b ∈ Ld(Rd), then
equation (3.1) admits a unique strong solution.

Of course, we will not to prove such a strong result here, but a simper one below.

Theorem 3.1.4 (Zvonkin). Equation (3.1) admits a unique strong solution, provided that
a ∈ Sdδ and σ is Lipschitz, and b ∈ Cα(Rd) (∀α > 0).

Let
Lu = aij∂iju+ bi∂iu.

Consider
λu− Lu = f. (3.2)

We need the following analytic result.

Lemma 3.1.5. Suppose a ∈ Sdδ and a, b ∈ Cα. There exists a constant λ0 > 0 such that
for any λ > λ0 and f ∈ Cα, equation (3.2) admits a unique solution in C2,α. Moreover,

λ‖u‖α + ‖∇2u‖α 6 C‖f‖α, (3.3)

where C only depends on d, δ, and ‖a‖α and ‖b‖α.

The proof for the above lemma can be founded in Appendix B.2. Here we give the
Sketch of the proof for Lemma 3.1.5:

(i) If L = ∆ and f ∈ S (Rd), then for each λ > 0, one can use Fourier transformation
to solve (3.2), i.e. u = F−1 [F(f) · (λ+ 4π2| · |2)] ∈ ∩s>0H

s ⊆ C∞b . Moreover, (3.3)
can also be proved by Fourier analysis method (see Appendix B.2);

(ii) For any L satisfying the conditons in Lemma 3.1.5, and any u ∈ C2,α, one can prove
that (3.3) holds true for any λ sufficiently large via frozen coefficient method;

(iii) Let χ be a cutoff function and ζ be a mollifier. For any f ∈ Cα, we set fε = χε(f ∗ζε).
Here χε(x) = χ(x/ε) and ζε(x) = ε−dζ(x/ε). Using (i), for each ε > 0, there is a
smooth soluiton, say uε, to (3.2) with L and f replaced by ∆ and fε. The limit of
(uε), u, satisfies λu−∆u = f , and u also satisfies (3.3);

(iv) In the light of (3.3) and the method of continuity (see lemma below), one can obtain
the solvability of (3.2) in C2,α.

Lemma 3.1.6 (Method of continuity). Let B be a Banach space, V a normed vector space,
and Tt a norm continuous family of bounded linear operators from B into V . Assume that
there exists a positive constant C such that for every t ∈ [0, 1] and every x ∈ B,

‖x‖B 6 C‖Ttx‖V .

Then T0 is a surjective if and only if T1 is surjective as well.
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3.1 Strong solutions

Proof of Theorem 3.1.4. Since σ and b are bounded continuous, weak solution exists to
(3.1) (see [Hua01]). Thanks to Theorem 3.1.2, we only need to prove the pathwise unique-
ness.

Let λ > λ0. Here λ0 is the same number in Lemma 3.1.5. Consider the following
equation

λuλ − Luλ = b.

By Lemma 3.1.5 and interpolation theorem

‖∇u‖α 6 ‖u‖
1
2
α‖∇2u‖

1
2
α 6 Cλ−

1
2‖b‖α.

Choosing λ sufficiently large so that Cλ−
1
2 < 1/2. Set φ(x) = x+ u(x), then φ : Rd → Rd

is a C1,α-homeomorphism.
Assume that X and X ′ are two solutions to (3.1). Set Yt = φ(Xt) and Y ′t = φ(X ′t).

Then by Itô’s formula,

dY i
t = (δij + ∂ju

i)(Xt)σjk(Xt)dW
k
t +

[
ajk(Xt)∂jku

i(Xt) + (δij + ∂ju
i)(Xt)b

j(Xt)
]

dt

i.e.
dYt =[(I +∇u)σ] ◦ φ−1(Yt)dWt +

[
a : ∇2u + (I +∇u)b

]
◦ φ−1(Yt)dt

= [(I +∇u)σ] ◦ φ−1︸ ︷︷ ︸
=:σ̃

(Yt)dWt + λu ◦ φ−1︸ ︷︷ ︸
=:̃b

(Yt)dt.

Similarly, dY ′t = σ̃(Y ′t )dWt + b̃(Y ′t )dt. Since σ̃ and b̃ are both C1,α functions, as in the
proof for Theorem 3.1.1, we have

E|Yt − Y ′t |2 6 C

ˆ t

0

E|Ys − Y ′s |2ds.

This yields Yt = Y ′t , due to Gronwall’s inequality. Since φ is one-to-one, Xt = X ′t.

3.1.4 Stochastic Flow

Consider (3.1) .

Theorem 3.1.7. If σ and b are Lipschitz, then there exist versions of X(t, x) that are
jointly continuous in t and x a.s.

Proof.

X(t, x)−X(t, y) = x− y +

ˆ t

0

[σ(X(s, x))− σ(X(s, y))] dWs +

ˆ t

0

[b(X(s, x))− b(X(s, y))] ds

By the Burkholder-Davis-Gundy inequalities, for any t ∈ [0, 1],

E sup
s∈[0,t]

∣∣∣∣ˆ s

0

[σ(Xr(x))− σ(Xr(y))] dWr

∣∣∣∣p
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6CE

(ˆ t

0

|Xs(x)−X(s, y)|2ds

)p/2
6CE

ˆ t

0

|Xs(x)−X(s, y)|pds.

Set g(t) = E sups∈[0,t] |X(s, x)−X(s, y)|p. Then

g(t) 6 C|x− y|p +

ˆ t

0

g(s)ds, t ∈ [0, 1].

Gronwall’s inequality yields

E sup
t∈[0,1]

|X(t, x)−X(t, y)|p 6 C|x− y|p, ∀p > 2.

Moreover,

E |X(t, x)−X(s, y)|p 6 C
(
|x− y|+ |t− s|

1
2

)p
, x, y ∈ Rd, t, s ∈ [0, 1], p > 2.

This together with Lemma 1.2.3 implies that there is a version of continuous version of
(t, x) 7→ X(t, x) such that

‖X(ω)‖Cα([0,1];Ċβ(BR)) 6 K(ω)

with α ∈ (0, 1/2) and β ∈ (0, 1), and K ∈ Lp for all p > 1.

Remark 3.1.8. The above result also holds if σ and b are ω-dependent and ‖σ‖C1 +
‖b‖C1 6 L a.s., for some constant L.

The collection of processes X(t, x) is called a flow. If σ and b are smoother functions,
then X(t, x) will be smoother in x. If in we take derivative, and use the chain rule,
formally we obtain

∂jX
i
t(x) =δij +

ˆ t

0

∂lσ
i
k(X(s, x))∂jX

l(s, x)dW k
s

+

ˆ t

0

∂lb
i(X(s, x))∂jX

l(s, x)ds.

To make this more precise, suppose σ and b are in C2 and are bounded with bounded
first and second derivatives and consider the SDE

dJ(t, x) = ∂lσ(X(t, x))J l(t, x)dWt +∇b(X(t, x))J(t, x)dt, Y0 = I (3.4)

Follow the proof of Theorem 3.1.7, we have

Proposition 3.1.9. Assume σ, b ∈ C2
b . A pathwise solution to (3.4) exists and is unique.

The solution has moments of all orders. If J(t, x) denotes the solution, versions of J(t, x)
exist that are jointly Hölder continuous in t and x, and

E sup
t∈[0,1]

|J(t, x)− J(t, y)|p 6 C|x− y|p, x, y ∈ Rd, p > 1.
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3.1 Strong solutions

Exercise 3.1.1. Prove the above Lemma.

We now prove the differentiability of X(t, x).

Theorem 3.1.10. Suppose σ, b ∈ Ck
b . Then x 7→ X(t, x) is Ck−1,α a.s., and ∇X(t, x) =

J(t, x).

Proof. For simplicity we take b = 0 and k = 2. Set

∇h
jX

i
t(x) :=

1

|h|
[
X i
t(x+ ejh)−X i

t(x)
]
, h ∈ (−1, 1)

and
Zh(t, x) := ∇hX(t, x)− J(t, x).

Noting that

∇h
jX

i(t, x) = δij +

ˆ t

0

[ˆ 1

0

∂lσ
i
k(τX(s, x+ ejh) + (1− τ)X(s, x))dτ

]
︸ ︷︷ ︸

6‖∇σ‖∞

∇h
jX

l(s, x)dW k
s ,

as we done in the proof of Theorem 3.1.7, it is not hard to prove

sup
x∈Rd;h∈(−1,1)

E sup
t∈[0,1]

|∇hX(t, x)|p <∞, p > 1. (3.5)

By Taylor expansion,

∇h
jX

i(t, x)−∇h
jX

i(t, y)

=

ˆ t

0

[ˆ 1

0

∂lσ
i
k(τX(s, x+ ejh) + (1− τ)X(s, x))dτ

]
︸ ︷︷ ︸

6‖∇σ‖∞

[
∇h
jX

l(t, x)−∇h
jX

l(t, y)
]

dW k
s

+

ˆ t

0

[ˆ 1

0

∂lσ
i
k(τX(s, x+ ejh) + (1− τ)X(s, x))− ∂lσ(τX(s, y + ejh) + (1− τ)X(s, y))dτ

]
︸ ︷︷ ︸

6‖∇2σ‖∞(|X(s,x+ejh)−X(s,y+ejh)|+|X(s,x)−X(s,y)|)

∇h
jX

l(s, y)dW i
s .

Let
g(t) = E sup

s∈[0,t]

|∇hX(s, x)−∇hX(s, y)|p.

Then BDG and Gronwall’s inequality yield

g(t) 6C
ˆ t

0

E
[
(|X(s, x+ h)−X(s, y + h)|+ |X(s, x)−X(s, y)|)

∣∣∇hX(s, y)
∣∣]p ds

6C

[
E

ˆ t

0

(|X(s, x+ h)−X(s, y + h)|+ |X(s, x)−X(s, y)|)2p ds

]1/2

[
E

ˆ t

0

|∇hX(s, y)|2pds
]1/2 (3.5)

6 C|x− y|p, p > 2.
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This together with Proposition 3.1.9 implies

E sup
t∈[0,1]

|Zh(t, x)− Zh(t, y)|p 6 C|x− y|p, p > 1. (3.6)

On the other hand,

Zh,i
j (t, x) =

ˆ t

0

{
∇h
j

[
σik(X(s, x))

]
− ∂lσik(X(s, x))J lj(s, x)

}
dW k

s

=

ˆ t

0

{
∂lσ

i
k(X(s, x))

[
∇h
jX

l(s, x)− J lj(s, x)
]

+Rh,i
jk (s, x)

}
dW k

s

=

ˆ t

0

[
∂lσ

i
k(X(s, x))Zh,l

j (s, x) +Rh,i
jk (s, x)

]
dW k

s ,

where

Rh,i
jk (s, x) = ∇h

j

[
σik(X(s, x))

]
− ∂lσik(X(s, x))∇h

jX
l(s, x),

and

|Rh(s, x)| 6 |h| ‖∇2σ‖∞|∇hX(s, x)|2.

Again utilizing BDG inequality and Gronwall’s inequality, we see that for each p > 2,

E sup
τ∈[0,t]

|Zh(τ, x)|p 6CE

{ˆ t

0

[
|Zh(s, x)|2 +

(
Rh(s, x)

)2
]

ds

}p/2
6C
ˆ t

0

E sup
τ∈[0,s]

|Zh(τ, x)|pds+ C|h|p
ˆ t

0

E|∇hX(s, x)|2pds,

which together with (3.5) implies

E sup
t∈[0,1]

|Zh(t, x)|p 6 C|h|p, |h| < 1. (3.7)

Combining (3.6) and (3.7), we obtain

E sup
t∈[0,1]

|Zh(t, x)− Zh(t, y)|p 6 C|x− y|θp|h|(1−θ)p, θ ∈ [0, 1], p > 1 |h| < 1.

Thanks to Lemma (1.2.3), for any α ∈ (0, 1),

lim
|h|→0

E sup
t∈[0,1]

‖Zh(t, ·)‖pCα = 0, p > 1.

Therefore, X(t, ·) ∈ C1,α a.s. and ∇X(t, x) = J(t, x).

One can also show (see Ikeda and Watanabe [IW14]) that the map x 7→ X(t, x) is
one-to-one and onto Rd.
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3.2 Weak solutions

3.2 Weak solutions

In this section, we study the weak well-posedness of (3.1). The core is to study the
regularity of following resolvent equation:

λu− Lu = f, (3.8)

where L = aij∂ij and a ∈ Sdδ and uniformly continuous.

3.2.1 Uniqueness in law

Theorem 3.2.1 (Stroock-Varadhan). Under the assumptions that σ, b are bounded, σ is
continuous and σ(x)σt(x) > 0 for each x ∈ Rd. Then SDE (3.1) has a weak solution, and
the distribution of such solution is unique.

Our strategy is

(a) Utilizing Girsanov transformation to simplify the problem to the case without drift
term;

(b) Using generalized Itô’s formual and Lp-estimate for the resolvent equation to show
the uniqueness of law(Xt).

(c) Proving the law of (Xt)t>0 is unique by induction.

Lemma 3.2.2. Let L = ∆ and p ∈ (1,∞). For any f ∈ Lp, there exists a unique solution
u ∈ W 2,p solving (3.8). Moreover, u satisfies

λ‖u‖p + ‖∇u2‖p 6 C‖f‖p, (3.9)

where C only depends on d and p.

Theorem 3.2.3. Let p ∈ (1,∞). There exists a constant λ0 = λ0(d, p, ωa) > 0 such that
for any λ > λ0 and f ∈ Lp, equation (3.8) admits a unique solution u ∈ W 2,p.

Proof. Assume that u ∈ W 2,p. We want to show that for sufficinetly large λ, it holds that

λ‖u‖p + ‖u‖W 2,p 6 C‖λu− Lu‖p. (3.10)

Suppose we have (3.10). Let T0 = λ − ∆ and T1 = λ − L, and B = W 2,p and V = Lp.
Utilizing Lemma 3.1.6 and Lemma 3.2.2, we can see that (3.8) has a solution in W 2,p.

Now let us prove (3.10). Let f := λu − Lu. Assume ζ ∈ C∞c (B2) such that ζ > 0,
ζ ≡ 1 in B1. Set ζzε = ζ((x− z)/ε). Then

λ(uζzε )− aij(z)∂ij(uζ
z
ε ) = fζzε − 2aij∂iu∂jζ

z
ε − aij∂ijζzεu+ (aij − aij(z))∂ij(uζ

z
ε ).

By Lemma 3.2.2, we get

λ‖uζzε‖p + ‖∇2(uζzε )‖p 6Cωa(2ε)‖∇2(uζzε )‖p + C‖f‖Lp(B2ε(z))

+ Cε−1‖∇u‖Lp(B2ε(z)) + Cε−2‖u‖Lp(B2ε(z)).

44



Choosing ε0 > 0 sufficiently small such that Cωa(2ε0) 6 1/2, then

λ‖u‖Lp(Bε0 (z)) + ‖∇2u‖Lp(Bε0 (z))

6C‖f‖Lp(B2ε0 (z)) + Cε0
−1‖∇u‖Lp(B2ε0 (z)) + Cε−2

0 ‖u‖Lp(B2ε0 (z)).
(3.11)

Fact: There exist constants c = c(d, p, ε) > 0 and C = C(d, p, ε) > 0, and a
sequence {zi}i∈N ⊆ Rd such that

c
∑
i

ˆ
|hζziε |p 6

ˆ
|h|p 6 C

∑
i

ˆ
|hζziε |p. (3.12)

By (3.11) and (3.12), we obtain

λ‖u‖pp + ‖∇2u‖pp 6 C‖f‖pp + C‖∇u‖pp + C‖u‖pp,

where C only depends on d, p and ωa. Using intepolation theorem, one can see that

λ‖u‖p + ‖∇u‖p + ‖∇2u‖pp 6
1

2
‖∇2u‖p +

λ0

2
‖u‖p + C‖f‖p,

where λ0 > 1 is a constant only depends on d, p and ωa. Therefore, for any λ > λ0 > 1,
we have

λ‖u‖p + ‖u‖W 2,p 6 C‖f‖p.

Now let f ∈ C∞c (Rd). Assume that u ∈ W 2,d is a solution to (3.8) for some λ > λ0.
Applying Generalized Itô’s formula, one can see that

d
(
e−λtu(Xs+t)

)
= e−λt [−λu(Xs+t) + Lu(Xs+t)] + e−λt∇u(Xs+t)σ(Xs+t)dWs+t.

Taking expection conditional on Fs, we get

u(Xs) = E(u(Xs)|Fs) =

ˆ ∞
0

e−λtE
(
f(Xs+t)

∣∣Fs) dt, ∀λ� 1.

This implies that P(Xs+t ∈ ·|Fs) is unique and P(Xs+t ∈ ·|Fs) = P(Xs+t ∈ ·|Xs). Using
this fact, then the uniqueness in law of Xt can be obtained by induction.

3.2.2 Markov properties

Define W to be the set of all continuous functions from R+ to Rd. Suppose that for each
starting point x the SDE (3.1) has a solution that is unique in law. Let us denote the
solution by X(x, t, ω). For each x define a probability measure Px on W so that

P (X(x, t1) ∈ A1, · · · , X(x, tn) ∈ An)

=Px(ω(t1) ∈ A1, · · · , ω(tn) ∈ An).
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3.2 Weak solutions

Let G0
t be the σ-algebra generated by {ωs : s 6 t}. We complete these σ-fields by

considering all sets that are in the Px completion of G0
t for all x. Finally, we obtain a

right continuous filtration by letting Gt := ∩ε>0G0
t+ε. We then extend Px to G∞.

Shift operators θt :W 3 ω 7→ ω(t+ ·) ∈ W .
The strong Markov property is the assertion that

Ex(Y ◦ θτ |Gτ )(ω) = EZτ (Y ),

whenever x ∈ Rd, Y ∈ G∞ is bounded, and τ a finite stopping time.
To prove the strong Markov property it suffices to show

Ex(f(Zτ+t)|Gτ ) = EZτf(Zt), (3.13)

for all x ∈ Rd, f ∈ Cc(Rd) and τ a bounded stopping time.

Theorem 3.2.4. Suppose the solution to (3.1) is weakly unique for each x. Then (Px, Xt)
is a strong Markov process.

Proof. We have the equation

Zt = Z0 +

ˆ t

0

σ (Zs) dBs +

ˆ t

0

b (Zs) ds,

where B is a Brownian motion, not necessarily the same as the one in (3.1). Set Z ′t = Zτ+t

and B′t = Bτ+t −Bτ . Then

Z ′t = Z ′0 +

ˆ t

0

σ (Z ′s) dB′s +

ˆ t

0

b (Z ′s) ds. (3.14)

Let Qτ (ω, ω
′) be the regular conditional distribution for E(·|Fτ ).

Claim:

• W ′ is a Brownian motion with respect to the measure Qτ (ω, ·) for almost every
ω;

• Z ′0(ω′) = Zτ(ω)(ω), Qτ (ω, ·)-a.s..

The uniqueness in law tells us that

EQτf (Z ′t) = EZτf (Zt) , Px − a.s..

On the other hand, by definition

EQτf (Z ′t) = EQτf (Zτ+t) = Ex(f(Zτ+t)|Gτ )

Thus, we get (3.13).
Our task now is to prove the claim. We need the following
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Fact: If Bt is a Gt-Brownian motion and τ is a finite stopping time, then Bτ+t−Bτ

is a Gτ+t-Brownian motion.

Using the above fact, we have

EQτ exp
(
i

n−1∑
k=1

λk ·
(
Bτ+tk+1

−Bτ+tk

) )
=Ex

[
exp

(
i

n−1∑
k=1

λk ·
(
Bτ+tk+1

−Bτ+tk

) )∣∣∣Gτ]
= exp

( n−1∑
k=1

λ2
k (tk+1 − tk) /2

)
,

we get what we claimed.

From now on, by a slight abuse of notation, we will say (Px, Xt) is a strong Markov
family when (Px, Zt) is a strong Markov family.
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3.2 Weak solutions

48



Chapter 4

Applications to Elliptic PDEs

Let Xt be the solution to (3.1) with X0 = x. We will write (Px, Xt) for the strong Markov
process corresponding to σ and b (This can be ensured by assuming σ, b ∈ C1

b , or a ∈ Sδ,
a is continuous and b is bounded).

We have considered Poisson’s equation in Chapter 1. Let u be a C2
b solution to (3.2).

Then by Theorem 1.5.11,

u(x) = Ex
ˆ ∞

0

e−λtf(Xt)dt.

We have also studied the Poisson’s equation in a nice bounded domain:{
λu− Lu = f in D

u = 0 on ∂D,
(4.1)

and showed that

u(x) = Ex
ˆ τD

0

e−λsf (Xs) ds,

if Px(τD <∞) = 1.

4.1 Dirichlet Problems and Harmonic functions

Let D be a ball (or other nice bounded domain) and let us consider the solution to the
Dirichlet problem: given g a continuous function on ∂D, find u ∈ C(D̄) such that u is C2

in D and {
Lu = 0 in D

u = g on ∂D.
(4.2)

Theorem 4.1.1. The solution to (4.2) satisfies

u(x) = Exg (XτD) ,

provided that Px(τD <∞) = 1.
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4.1 Dirichlet Problems and Harmonic functions

Proof. Let τn = inf {t : dist (Xt, ∂D) < 1/n}. By Itô’s formula,

u (Xt∧τn) = u (X0) + martingale +

ˆ t∧τn

0

Lu (Xs) ds.

Since Lu = 0 inside D, taking expectations shows

u(x) = Exu (Xt∧τn) .

We let t→∞ and then n→∞. By dominated convergence, we obtain u(x) = Exu (XτD).
This is what we want since u = g on ∂D.

Exercise 4.1.1. Theorem 4.1.1 implies the weak maximum principle: maxD u 6 max∂D u.

Exercise 4.1.2. Theorem 2.1 implies the strong maximum principle: if u is not a constant
function, then for each x ∈ D, u(x) < max∂D u

Theorem 4.1.2. Let g be continuous on ∂D. Suppose that Px (τD <∞) = 1 and u(x) =
Exg(XτD) is continuous on D̄ and C2 on D. Suppose the coefficients of L are continuous.
Then Lu = 0 in D.

Proof. Let Br(x) ⊆ D. By the strong Markov property, we have

u(x) =Exg(XτD) = Exg(XτD ◦ θτBr(x)) = Ex
{
Ex
[
g(XτD ◦ θτBr(x))

∣∣∣FτBr(x)]}
=Ex

[
EXτBr(x)g(XτD)

]
= Exu(XτBr(x)

).

Noting that u ∈ C2(D), by Itô’s formula,

u(XτBr(x)
)− u(x) =

ˆ t∧τBr(x)

0

Lu(Xs)ds+Mt∧τBr(x) ,

where M is a martingale. Taking expectations and letting t→∞,

0 =
1

ExτBr(x)

Ex
ˆ τBr(x)

0

Lu(Xs)ds.

By the continuity of Lu and letting r → 0, we get Lu(x) = 0.

If Lu = 0 in D, we say u is L-harmonic in D.

One can also the following Schrödinger type operator:

Lqu = Lu+ qu.

Equation involving the above operator are considerably simpler than the quantum me-
chanics Schrödinger equation because here all terms are real-valued.
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Theorem 4.1.3. Let D be a nice bounded domain, and q ∈ C(D̄) and g ∈ C(∂D). Let
u ∈ C2(D) ∩ C(D̄). that agrees with g on ∂D and satisfies Lqu = 0 in D. If

Ex exp

(ˆ τD

0

q+(Xs)ds

)
<∞,

then

u(x) = Ex
[
g(XτD) exp

(ˆ τD

0

q(Xs)ds

)]
.

Exercise 4.1.3. Prove Theorem 4.1.3.

Exercise 4.1.4. Using (2.7) to show: there exists ε > 0 such that if B ⊆ Q1, x ∈ Q1/2,
and |Q1 −B| < ε, then

Ex
ˆ τQ1

0

1B (Xs) ds > c > 0,

where c is a constant only depends on d, δ and ε.

Exercise 4.1.5. In this exercise, d > 3. Let K be a compact subset of the open unit
ball of Rd, and TK := inf {t > 0 : Bt ∈ K}. We assume that D := Rd\K is connected.
We also consider a function g defined and continuous on K. The goal of the exercise
is to determine all functions u : D̄ → R that satisfy: (P) u is bounded and continuous
on D̄, harmonic on D, and u(y) = g(y) if y ∈ ∂D. (This is the Dirichlet problem in
D, but in contrast with Sect. 7.3 above, D is unbounded here.) We fix an increasing
sequence (Rn)n>1 of reals, with R1 > 1 and Rn ↑ ∞ as n → ∞. For every n > 1, we set
T(n) := inf {t > 0 : |Bt| > Rn}.

1. Suppose that u satisfies (P). Prove that, for every n > 1 and every x ∈ D such that
|x| < Rn,

u(x) = Ex

[
g (BTK ) 1{TK6T(n)}

]
+ Ex

[
u
(
BT(n))

)
1{T(n)6TK}

]
.

2. Show that, by replacing the sequence (Rn)n>1 with a subsequence if necessary, we may
assume that there exists a constant α ∈ R such that, for every x ∈ D,

lim
n→∞

Ex

[
u
(
BT(n)

)]
= α,

and that we then have

lim
|x|→∞

u(x) = α.

3. Show that, for every x ∈ D,

u(x) = Ex
[
g (BTK ) 1{TK<∞}

]
+ αPx (TK =∞) .

4. Assume that D satisfies the exterior cone condition at every y ∈ ∂D (this is defined in
the same way as when D is bounded). Show that, for any choice of α ∈ R, the formula of
question 3. gives a solution of the problem (P).
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4.2 Once again on the hitting probability

4.2 Once again on the hitting probability

Recall that

xt =

ˆ t

0

σsdWs, a =
1

2
σσt ∈ Sdδ .

In this section, we want to prove following important hitting probability estimate,
which is a refined version of Proposition 2.2.9. This was first found by Krylov-Safonov
[KS79].

Recall that

σΓ(x) = inf {t > 0 : x+ xt ∈ Γ} and τQ = inf {t > 0 : x+ xt /∈ Q} .

Theorem 4.2.1. There is a increasing function p : (0, 1) → (0, 1), which only depends
on d and δ, such that for any Γ ⊂ Q1 and x ∈ Q1/2,

P(σΓ(x) < τQ1(x)) > p(|Γ|). (4.3)

Before prove Theorem 4.2.1, we need some preparation.
One tool is a corollary of the Calderón-Zygmund cube decomposition. Let Q1 be the

unit cube. We split it into 2n cubes of half side. We do the same splitting with each one
of these 2n cubes and we iterate this process. The cubes obtained in this way are called
dyadic cubes.

If Q is a dyadic cube different from Q1, we say that Q̃ is the predecessor of Q if Q is
one of the 2n cubes obtained from dividing Q̃.

We also let Q(κ) denote the cube with the same center as Q but side length κ times
as long.

Lemma 4.2.2 (Krylov-Safonov [KS79]). Let γ ∈ (0, 1). If Γ ⊂ Q1 and |Γ| 6 γ, then
there exists a sequaence of dyakic cubes, say {Qi}i∈I such that

1. the interiors of the Qi are pairwise disjoint;

2. |Γ ∩Qi| > γ|Qi| and |Γ ∩ Q̃i| 6 γ|Q̃i|, for each i ∈ I;

3. |Γ| 6 γ|E| and |Γ\E| = 0, where E = ∪i∈IQ̃i.

Proof. We use the Calderón-Zygmund decomposition. We have that

|Q1 ∩ Γ|
|Q1|

= |Γ| 6 γ.

We subdivide Q1 into 2n dyadic cubes. If Q is one of these 2n subcubes of Q1 and
satisfies |Q ∩ Γ|/|Q| 6 γ, we then split Q into 2n dyadic cubes. We iterate this process.
In this way, we pick a family Q1 ·Q2.. . of dyadic cubes (different from Q1) such that

|Qi ∩ Γ|
|Qi|

> γ, ∀i ∈ I
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If x /∈ ∪i∈IQi then x belongs to an infinite number of closed dyadic cubes Q with diameters
tending to zero, such that |Q ∩ Γ|/|Q| 6 γ < 1. Applying the Lebesgue differentiation
theorem to 1A, we get that 1A(x) 6 γ < 1 for a.e. x /∈ ∪i∈IQi. Hence A ⊂ ∪i∈IQi, except
for a set of measure zero.

Consider the family of predecessors of the cubes Qi, and relabel them so that {Q̃i}i∈Ĩ
are pairwise disjoint. We clearly have that

Γ ⊆ ∪i∈IQi ⊆ ∪i∈ĨQ̃
i =: E,

except for a set of measure zero. From the way we chose the cubes Qi,∣∣∣Q̃i ∩ Γ
∣∣∣∣∣∣Q̃i

∣∣∣ 6 γ, ∀i ∈ Ĩ.

We conclude that

|Γ| 6
∑
i∈Ĩ

∣∣∣Q̃i ∩ Γ
∣∣∣ 6 γ

∑∣∣∣Q̃i
∣∣∣ = γ

∣∣∣∣∣∣
⋃
i∈Ĩ

Q̃i

∣∣∣∣∣∣ 6 γ|E|,

that finishes the proof of Lemma 4.2.2.

The second tool is support theorem, which implies

Lemma 4.2.3. Let κ ∈ (3/4, 1). Suppose that Q̃ is the predecessor of Q, then for each

x ∈ Q̃(κ),

P
(
σQ( 1

2
)(x) < τQ̃(x)

)
> p′(κ) > 0,

where p′(κ) only depends on d, δ and κ.

Proof of Theorem 4.2.1. Define

p(γ) = inf
{
P (σΓ(x) < τQ1(x)) : a ∈ Sdδ , x ∈ Q1/2,Γ ⊂ Q1, |Γ| > γ

}
.

By Proposition 2.2.9, we know that there exists a constant b ∈ (0, 1) such that p(b) > 0.

We want to prove that for each γ ∈ (0, b],

p(γ) > 0 implies p (θγ) > 0, where θ =
1 + b

2
< 1.

Assume that p(γ) > 0 for some γ ∈ (0, b], and Γ ⊆ Q1 with |Γ| > θγ. Let Qi and

E = ∪i∈IQ̃i be the sets in Lemma 4.2.2. Then

|E| > |Γ|/γ > θ =
1 + b

2
.
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4.2 Once again on the hitting probability

Therefore, we can find a finite subset of I, say I0, and κ ∈ (3/4, 1) such that

A :=
⋃
i∈I0

Q̃i(κ) with |A| > b.

Since |A| > b|Q1|, by Proposition 2.2.9,

P (σA(x) < τQ1(x)) > p(b) > 0, ∀x ∈ Q1/2. (4.4)

Suppose that y ∈ ∂A = ∪i∈I0∂Q̃i(κ), then y ∈ ∂Q̃i(κ) for some i ∈ I0. In this case,

P
(
σQi(1/2)(y) < τQ1(y)

)
> P

(
σQi(1/2)(y) < τQ̃i(y)

)
> p′(κ) > 0,

due to Lemma 4.2.3. Set
B =

⋃
i∈I0

Qi(1/2).

Then
P (σB(y) < τQ1(y)) > inf

y∈∂A
P
(
σQi(1/2)(y) < τQ̃i(y)

)
>p′(κ) > 0, ∀y ∈ ∂A.

The conditional version of above estimate we need below is

P
(
σ′B < τ ′Q1

∣∣FσA(x)

)
> p′(κ) > 0. (4.5)

where

σ′B := inf {t > σA(x) : x+ xt ∈ B} and τ ′Q1
:= inf {t > σA(x) : x+ xt /∈ Q1} .

Suppose that z ∈ ∂B, then z ∈ ∂Qi(1/2) for some i ∈ I0. Since |Γ ∩ Qi| > γ|Qi|, by
our assumption

P
(
σΓ∩Qi(z) < τQ1(y)

)
> P(σΓ∩Qi(z) < τQi(z)) > p(γ) > 0, ∀z ∈ ∂B.

Set
D =

⋃
i∈I0

Qi.

Then
P(σΓ(z) < τQ1(z)) > P (σΓ∩D(z) < τQ1(z))

> inf
i∈I0

P(σΓ∩Qi(z) < τQi(z)) > p(γ) > 0, ∀z ∈ ∂B.

The conditional version of above estimate we need below is

P
(
σ′′Γ < τ ′′Q1

∣∣Fσ′B) > p(γ) > 0. (4.6)

where

σ′′Γ := inf {t > σ′B : x+ xt ∈ Γ} and τ ′′Q1
:= inf {t > σ′B : x+ xt /∈ Q1}
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Therefore, for each x ∈ Q1/2,

P (σΓ(x) < τQ1(x))

>P
(
σA(x) < τQ1(x);σ′Γ < τ ′Q1

∣∣FσA(x)

)
=E

[
1σA(x)<τQ1

(x)P
(
σ′Γ < τ ′Q1

∣∣FσA(x)

)]
=E

[
1σA(x)<τQ1

(x)P
(
σ′B < τ ′Q1

;σ′′Γ < τ ′′Q1

∣∣FσA(x)

)]
=E

{
1σA(x)<τQ1

(x)E
[
1σ′B<τ ′Q1

P
(
σ′′Γ < τ ′′Q1

∣∣Fσ′B) ∣∣FσA(x)

]}
(4.6)

> p(γ)E
[
1σA(x)<τQ1

(x)P
(
σ′B < τ ′Q1

∣∣FσA(x)

)]
(4.5)

> p(γ)p′(κ)P (σA(x) < τQ1(x))

(4.4)

> p(b)p(γ)p′(κ) > p′(κ)p2(γ) > 0.

Since the above estimate holds for any Γ ⊆ Q1 with |Γ| > θγ, we get p(θγ) > 0, provided
that p(γ) > 0. Noting that θ < 1, we obtain that p(γ) > 0 for all γ ∈ (0, 1).
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4.3 Harnack Inequality and Hölder estimate

4.3 Harnack Inequality and Hölder estimate

In this section, we prove some theorems of Krylov and Safonov [KS81] concerning (posi-
tive) L-harmonic functions. Let δ ∈ (0, 1). Set

P(δ) :=
{
{Px}x∈Rn : (Px, X) is the strong Markov process

associate with some a(·) ∈ Sdδ
}
.

Let

[u]α;D := sup
x,y∈D

|u(x)− u(y)|
|x− y|α

and Osc
D
u := sup

x∈D
u(x)− inf

x∈D
u(x).

Theorem 4.3.1 (Hölder estimate). Suppose u is bounded in Q1 and Lu = 0 in Q1. Then
there exist α and C only depending on d and δ such that

[u]α;Q1/2
6 C‖u‖L∞(Q1). (4.7)

Proof. Claim: there exists a constant ρ ∈ (0, 1) such that for any z ∈ Q1/2, r 6 1/2,

Osc
Qr/2(z)

u 6 ρ Osc
Qr(z)

u. (4.8)

Assume the claim is true. Suppose that x, y ∈ Q1/2 and |x − y| � 1, let k ∈ N such
that 2−k−1 6 |x− y| < 2−k.

|u(x)− u(y)| 6 Osc
Q

2−k (x)
u 6 ρ Osc

Q
2−k+1 (x)

u 6 · · · 6 Cρk‖u‖L∞(Q1)

6Cρ− log2 |x−y|‖u‖L∞(Q1) 6 C|x− y|− log2 ρ‖u‖L∞(Q1).

Therefore, the above claim implies (4.7) with α = log2 ρ
−1.

To prove (4.8). Without loss of generality, we can assume infx∈Qr(z) u = 0 and
supx∈Qr(z) u = 1. In this case, OscQr(z) u = 1. Let B := {x ∈ Qr/2 : u(x) > 1/2},
we may assume |B| > 1

2
|Qr/2|, if not, we replace u by 1 − u. For any x ∈ Qr/2, by Itô’s

formula, Theorem 4.2.1 and scaling,

u(x) = Exu(XτQr∧σB) >
1

2
Px(σB < τQr) >

1

2
p(2−d−1).

Hence we get

Osc
Qr/2(z)

u 6 1− 1

2
p(2−d−1) =: ρ = ρ Osc

Qr(z)
u.

Theorem 4.3.2 (Harnack inequality). Suppose a ∈ Sdδ and L = aij∂ij. There exists C
depending only on δ such that if u is nonnegative, bounded in Q4, and u(Xt∧τQ4

) is a
martingale, then u(x) 6 Cu(y) if x, y ∈ Q1.
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Proof. If we look at u + δ and let δ → 0, we may assume u > 0. By looking at Cu, we
may assume infQ1/2

u = 1. By Theorem , we know that u is Hölder continuous in Q1, so
there exists

y ∈ Q1/2 such that u(y) = 1.

We want to show that u is bounded above by a constant in Q1, where the constant depends
only on δ.

By the support theorem and scaling, if x ∈ Q1/2, there exists δ such that

Py
(
σQ1/2(x) < τQ2

)
> δ.

By scaling, if z ∈ Q1/2(x), then Pz
(
σQ1/4(x) < τQ2

)
> δ. So by the strong Markov

property,

Pz
(
σQ1/4(x) < τQ2

)
> δ2.

Repeating and using induction,

Py
(
σQ

2−k (x) < τQ2

)
> δk.

Then
1 = u(y) > Ey

[
u
(
XσQ

2−k (x)

)
;σQ

2−k (x) < τQ2

]
> δk

(
inf

Q
2−k (x)

u

)
,

or
inf

Q
2−k (x)

u 6 δ−k, ∀k > 1. (4.9)

By the proof of Theorem 4.3.1, there exists ρ < 1 such that

Osc
Q

2−k−1 (x)
u 6 ρ Osc

Q
2−k (x)

u.

Take N large so that ρ−N > 1/ (δ − δ2). Then

Osc
Q

2N−k (x)
u > ρ−N Osc

Q
2−k (x)

u >
1

δ − δ2
Osc

Q
2−k (x)

u.

Take K large so that
√
d2N−K < 1/8. Suppose there exists x0 ∈ Q1(y) such that u (x0) >

δ−K−1.

We will construct a sequence x1, x2, . . . by induction such that u(xj) > δ−K−j−1.

Suppose we have xj ∈ Q2N+1−K−j (xj−1) with u (xj) > δ−K−j−1, j 6 n. Since |xj − xj−1| <√
d2N+1−K−j, 1 6 j 6 n, and |x0 − y| 6 1, then |xn − y| < 2. Since u (xn) > δ−K−n−1

and by (4.9), infQ
2−K−n (xn) u 6 δ−K−n,

Osc
Q

2−K−n (xn)
u > δ−K−n

(
δ−1 − 1

)
.
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4.3 Harnack Inequality and Hölder estimate

So OscQ
2N−K−n (xn) u > δ−K−n−2, which implies that there exists xn+1 ∈ Q2N−K−n(xn) with

u (xn+1) > δ−K−n−2 because u is nonnegative. By induction we obtain a sequence xn with
xn ∈ Q3(y) and u (xn) →∞. This contradicts the boundedness of u on Q4. Therefore u
is bounded on Q1 by δ−K−1.
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Chapter 5

Malliavin’s proof of Hörmander’s
Theorem

Let V0, V1, . . . , Vn : Rd → Rd be vector fields satisfying C∞-boundedness conditions.
Consider{

dXt(x) =
∑n

=1 Vl(Xt) ◦ dW l
s + V0(Xt)dt = V (Xt) ◦ dWs + V0(Xt)dt,

X0(x) = x.
(5.1)

The Malliavin calculus is a method originally developed for proving smoothness of
pt(x, y) in the variable y, where pt(x, y) is the transition density of a process associated
to an operator with smooth coefficients. The basic idea involves an integration by parts
formula in an infinite-dimensional space.

There are two main approaches, one using the Girsanov transformation and the other
using the Ornstein-Uhlenbeck operator. We follow the Girsanov approach pioneered by
Bismut [Bis81] to obtain the integration by parts formula.

5.1 Integration by parts

Let d > 1, and ξ be a d-dimensional standard Gaussian random variable. Then

P ◦ ξ−1(dx) = µ(dx) =
1

(2π)
d
2

e−
|x|2
2 dx.

Suppose ϕ ∈ C∞c (Rd) and h ∈ Rd, integration by parts formula yields that

E [∇hϕ(ξ)] =
1

(2π)
d
2

ˆ
Rd
∇hϕ(x)e−

|x|2
2 dx

=
1

(2π)
d
2

ˆ
Rd
ϕ(x)〈x, h〉e−

|x|2
2 dx = E [ϕ(ξ)〈ξ, h〉] .

(5.2)

One can also verify that
E[∂αϕ(ξ)] = E[ϕ(ξ)Pα(ξ)],

where α ∈ Nd and Pα is a polynomial.
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5.1 Integration by parts

Remark 5.1.1. (i) Charles Stein also showed that if (5.2) holds for all bounded, con-
tinuous and piecewise continuously differentiable functions ϕ with E|ϕ′(ξ)| < ∞,
then ξ has a standard normal distribution.

(ii) If h is a smooth vector field on Rd. Then,

E〈∇ϕ(ξ), h〉 =

ˆ
〈∇ϕ, h〉dµ = −

ˆ
ϕ (divh− 〈h, ·〉)︸ ︷︷ ︸

divµh

dµ

=E{ϕ(ξ)[〈h, ξ〉 − divh(ξ)]}.

(5.3)

The operator L := −divµ∇ = ∆− x · ∇ is called the Ornstein-Uhlenbeck operator.

The following lemma is a criterion for smooth densities

Lemma 5.1.2. Suppose ξ : Ω→ Rd. Suppose for each k there exists Ck such that∣∣E∇kϕ(ξ)
∣∣ 6 Ck‖ϕ‖∞

whenever ϕ ∈ Ck
c . Then there exists ρ smooth such that

P(ξ ∈ A) =

ˆ
A

ρ(x)dx

for all Borel sets A.

Proof. Let µ = P ◦ ξ−1 ∈ P(Rd) ⊆ D ′(Rd), and µε(x) =
´
Rd %ε(x − y)µ(dy). By our

assumption, for any α = (α1, · · ·αd) ∈ Nd with α1 + · · ·αd = k,

(−1)|α|〈ϕ, ∂αµε〉 =〈∂αϕ, µε〉 = 〈∂αϕ ∗ %ε, µ〉

=

ˆ
Rd
∂αϕ ∗ %ε(x)µ(dx)

6Ck‖ϕ‖∞, ∀ϕ ∈ C∞c , k ∈ N.

This implies that supε ‖∇kµε‖1 6 Ck. In the light of Sobolev embedding, one can see that
supε ‖∇kµε‖∞ 6 C ′k. Therefore, µε → ρ ∈ C∞b .

The main tool in the proof is the Malliavin calculus with its integration by part formula
in Wiener space (infinite-dimension space), which was developed precisely in order to
provide a probabilistic proof of Hörmander’s Theorem. It essentially relies on the fact
that the image of a Gaussian measure under a “smooth” submersion that is sufficiently
integrable possesses a smooth density with respect to Lebesgue measure.

Below we set Ω = C([0, 1];Rn) and (Ω,F ,Ft,P) be the Wiener space. Then the
canonical process ωt is a n-dimensional Brownian motion under P.

Lemma 5.1.3. Suppose F,G ∈ C1
b (Ω) (both F and G are bounded and have bounded

Fréchet derivative). Suppose hs is adapted and bounded and let Ht =
´ t

0
hsds. Then

E(DHF G) = E

[
F

(
−DHG+G

ˆ 1

0

Ḣtdωt

)]
. (5.4)

The left-hand side represents the expectation of the Fréchet derivative at ω· in the direction
H.(ω).
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Proof. We first prove the case that G = 1. Let

Xε
t = ωt + ε

ˆ t

0

hsds

Let

M ε
t = exp

(
−ε
ˆ t

0

hsdωs −
ε2

2

ˆ t

0

|hs|2 ds

)
.

Let Pε be defined by dPε/dP = M ε
t on Ft. By Girsanov’s theorem, under Pε the

process

ωt −
〈
ω,−ε

ˆ
0

hsdωs

〉
t

= ωt + ε

ˆ t

0

hsds = Xε
t

is a martingale with the same quadratic variation as ωt, namely t. By Theorem 1.5.5,
under Pε the process Xt is a Brownian motion. Therefore

EεF (Xε) = EF.

On the other hand,

EεF (Xε)

= E

[
F

(
ω + ε

ˆ ·
0

hsds

)
exp

(
−ε
ˆ 1

0

hsdωs +
ε2

2

ˆ 1

0

|hs|2 ds

)]
.

By, the right-hand side of is independent of ε. We differentiate with respect to ε
and set ε = 0. The assumptions on h and F allow us to interchange the operations
of differentiation and expectation by use of the dominated convergence theorem and we
obtain

E

[
F

ˆ 1

0

Ḣsdωs

]
= E[DHF ].

Now replacing F in the above identity with FG, and using chain rule for DH , we obtain
our assertion.

Let

W 1,2
0 ([0, 1];Rd) =

{
H ∈ C([0, 1];Rn) : H(0) = 0, Ḣ ∈ L2([0, 1];Rn)

}
and

〈H,H ′〉W 1,2
0

:=

ˆ 1

0

Ḣ(s) · Ḣ ′(s)ds.

Suppose that F and H satisfy the same conditions in Lemma 5.1.3. Then by (5.4),

E[DHF ] = E

[
F

ˆ 1

0

Ḣ(t)dωt

]
= E[F (Ḣ · ω)], (5.5)

where (Ḣ · ω) is the Itô integral
´ 1

0
Ḣtdωt.
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5.1 Integration by parts

Compare (5.3) with (5.5). The adapted process H can be regard as “divergence-free”
vector field on Wiener space. In this case,

〈h, x〉 (Ḣ · ω)“ = ”〈H,ω〉W 1,2
0

and “divH” = 0.

Note that
(W 1,2

0 , ‖ · ‖W 1,2
0

) ' (L2([0, 1];Rn); ‖ · ‖2) =: (H, | · |H).

Let {hk}k∈N be a normal orthogonal basis of H, and W 1,2
0 3 Hk(t) =

´ t
0
hk(s)ds. Set

DkF := DHkF, F ∈ C1
b (Ω).

Since
∑

k(DkF )2 is bounded (since F ∈ C1
b (Ω)), we can define

DF :=
∑
k

DkF hk ∈ L∞(Ω;H), and |DF |H =

√∑
k

(DkF )2.

Next we going to identify “divH”, when H is not adapted. Suppose that

uk ∈ C1
b (Ω) and u =

∑
k

ukhk,

where the summation contains only finite non-zero terms. Then by (5.4),

E 〈DF, u〉H =E
〈
DF,

∑
k

ukhk

〉
H

= E
(∑

k

DkF uk

)
=E
(
F
∑
k

uk(hk · ω)
)
− E

(
F
∑
k

Dkuk

)

=E
[
F
( −divPu=:δ(u)︷ ︸︸ ︷∑

k

uk(hk · ω)︸ ︷︷ ︸
“=”〈u,ω〉H

−
∑
k

Dkuk︸ ︷︷ ︸
“=”divu

)]

The operator δ is called the divergence operator (cf. [Nua06]). In particular, for any
h ∈ H and F,G ∈ C1

b (Ω), we have

E[〈DF, h〉G] = E[FG(h · ω)]− E[F 〈DG, h〉]. (5.6)

The main examples of F we will consider later is ϕ(Xt), where ϕ is smooth and
Xt solves an SDE. However, the Itô map F : ω· 7→ X·(ω) is even not continuous from
C([0, 1];Rn) to C([0, 1];Rd). So we need some extension. In fact, as a consequence of the
integration by parts formula, we can show that the operator D is closable from L2(Ω,P;R)
to L2(Ω,P;H), which guarantees that it is “well-behaved” from a functional-analytic point
of view.
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Proposition 5.1.4. The operator D is closable. In other words if, for some sequence Fn,
one has Fn → 0 in L2(Ω,P;R) and DFn → u in L2(Ω,P;H), then u = 0.

Exercise 5.1.1. Prove the above poposition. (Hint: show that C1
b (Ω) is dense in L2(Ω,P).)

We henceforth denote by W 1,2 the domain of the closure of D and we do not dis-
tinguish between D and its closure. One can of course apply the Malliavin differentia-
tion operator repeatedly, thus yielding an unbounded closed operator Dk from L2(Ω,P)
to L2(Ω,P;H⊗k) We denote the domain of this operator by W k,2. Actually, a similar
proof shows that powers of D are closable as unbounded operators from Lp(Ω,P) to
Lp
(
Ω,P;H⊗k

)
for every p > 1. We denote the domain of these operators by W k,p. Fur-

thermore, for any Hilbert space K, we denote by W k,p(K) the domain of Dk viewed as an
operator from Lp(Ω,P;K) to Lp

(
Ω,P;H⊗k ⊗K

)
. We call a random variable belonging

to W k,p for every k, p > 1. We call a random variable belonging to W k,p for every k, p > 1
”Malliavin smooth” and we write S =

⋂
k,p W k,p as well as S (K) =

⋂
k,p W k,p(K). The

Malliavin smooth random variables play a role analogous to that of Schwartz test functions
in finite-dimensional analysis.

As mentioned above the main examples of S functionals will be considered is ϕ(Xt).

Proposition 5.1.5. Let Xt be the d-dimensional process that is a solution to (5.1). As-
sume that σ and b are C∞b . Then Xt ∈ S .

Lemma 5.1.6.

E|δu|2 = E|u|2 +
∑
k

E〈Duk, Duk〉H

Proof. Suppose u =
∑N

k=1 ukhk with uk ∈ C2
b (Ω). Recall that

δu = uk(hk · ω)−Dkuk.

Then

δDk′u = δ(Dk′uk hk) = Dk′uk(hk · ω)−DkDk′uk

and

Dk′δu = Dk′ (uk(hk · ω)−Dkuk) = Dk′uk(hk · ω) + uk′ −Dk′Dkuk

Therefore, Dδu− δDu = u.

E|δu|2 = E〈u,Dδu〉 = E|u|2H + E〈u, δDu〉H = E|u|2H + E|Du|2H⊗H = ‖u‖2
W 1,2 .

Proposition 5.1.7. For every p > 1 there exist constants K and C such that, for every
separable Hilbert space K and every u ∈ S (H⊗K), one has the bound

E|δu|p 6 C
∑

06k6K

(
E|Dku|2p

)1/2
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5.1 Integration by parts

Proof. By the above Lemma, we only prove the case that p > 2. Using the definition of δ
combined with the chain rule for D, Proposition 3.8 , and Young’s inequality, we obtain
the bound

E|δu|p = (p− 1)E
(
|δu|p−2〈u,Dδu〉

)
= (p− 1)E|δu|p−2

(
|u|2 + 〈u,Dδu〉H

)
6

1

2
E|δu|p + CE

(
|u|p + |u|p/2|Dδu|p/2

)
,

for some constant C. We now use Hölder’s inequality which yields

E
(
|u|p/2|δDu|p/2

)
6
(
E|u|2p

)1/4 (
E|Dδu|2p/3

)3/4
.

Combining this with the above, we conclude that there exists a constant C such that

E|δu|p 6 C
(
E |Du|2p

)1/2
+
(
E|δDu|2p/3

)3/2
.

The proof is concluded by a simple inductive argument.

Suppose that F ∈ S. Define

LF = δ(DF ) =
∑
k

(
DkDkF −DkF

ˆ 1

0

hk(t)dωt

)
Then L is the operator corresponding to the Ornstein-Uhlenbeck operator ∆ − x · ∇

in finite dimensional case, and

Exercise 5.1.2. Prove that
E[(LF )G] = E[F (LG)].

Noting that
L(FG) = (LF )G+ F (LG) + 2DkFDkG,

we have
E[(LF )G] = E[F (LG)] = −E[DkFDkG].

Theorem 5.1.8. Let p > 1, F ∈ W 1,p and . Assume that ht is adapted, Ht =
´ t

0
hsds

and |H|H is bounded. Then

(i) DHFn convergets to 〈DF,H〉 =: DHF in Lp and

E[DHF ] = E

[
F

ˆ 1

0

hsdωs

]
.

(ii) it holds that

ϕ(F ) ∈ W 1,p and Dϕ(F ) = ∇ϕ(F )DF, ∀ϕ ∈ C1
b .

(iii) if F,G ∈ W 2,p with p > 2,

E[(LF )G] = E[F (LG)] = −E[DkFDkG]. (5.7)
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Proof. We apply Lemma 5.1.3 discussed above to Fn and let n→∞. The convergence of
E [DHFn(W )] can be seen by

|DHFn −DHFm| = 〈H,DFn −DFm〉H 6 |H|H|D(Fn − Fm)|H → 0 in Lp, p > 1.

Since

E

(ˆ 1

0

hsdωs

)p′
6 CpE

(ˆ 1

0

|hs|2 ds

)p′/2
6 CE|H|p

′

H <∞, 1 < p′ <∞,

the convergence of E
[
Fn
´ 1

0
hsdωs

]
follows from the Lp convergence of Fn to F in Lp with

p > 1 and the Hölder inequality. The second assertion can be obtained by similar way.

5.2 Malliavin Matrix

Now assume that F = (F1, · · ·Fd), each Fi is real-valued and Fi ∈ ∩k,p>1W k,p, and that
ϕ ∈ C∞b (Rd). Let

γijF := 〈DF i, DF j〉H.

Then
D(ϕ(F )) = ∂iϕ(F )DF i

and 〈
D(ϕ(F )), DF j

〉
H = ∂iϕ(F )γijF .

This yields that

∂iϕ(F ) =
〈
D(ϕ(F )), DF j

〉
H

(
γ−1
F

)ji
, (5.8)

provided that γF is invertible.

Exercise 5.2.1. Assume F ∈ ∩k,p>1W k,p and γ−1
F ∈ ∩p>1L

p. Then

γ−1
F ∈ ∩k,p>1W

k,p and Dγ−1
F = −γ−1

F (DγF )γ−1
F .

Theorem 5.2.1. Suppose that F ∈ ∩k,p>1W k,p and γ−1
F ∈ ∩p>1L

p. Then

|E∇ϕ(F )| 6 C‖ϕ‖∞.

Proof. Thanks to (5.8) and Theorem 5.1.8,

E∇Tϕ(F ) = E
[
〈D(ϕ(F )), γ−1

F DF 〉H
]

=E
[
ϕ(F )δ(γ−1

F DF )
]

This yields that∣∣E∇Tϕ(F )
∣∣ 6‖ϕ‖∞E[δ(γ−1

F DF )] 6 C(p, ‖F‖W k,p , ‖γ−1
F ‖p)‖ϕ‖∞, p� 1.

65



5.2 Malliavin Matrix

We need to calculate DkXt, where Xt solves (5.1). By definition,

Xt(ω) = x+

ˆ t

0

V (Xs) ◦ dωs +

ˆ t

0

V0(Xs)ds

and

Xt(ω + εHk) =x+

ˆ t

0

V (Xs(ω + εHk)) ◦ d (ωs + εHk(s)) +

ˆ t

0

V0(Xs(ω + εHk))ds

=x+

ˆ t

0

V (Xs(ω + εHk)) ◦ dωs + ε

ˆ t

0

V (Xt(ω + εHk))hk(s)ds

+

ˆ t

0

V0(Xs(ω + εHk))ds

Taking the difference, dividing by ε, and letting ε→ 0, we obtain that

DkXt =

ˆ t

0

∂jVl(Xs)DkX
j
s ◦ dωls +

ˆ t

0

∂jV0(Xs)DkX
j
sds+

ˆ t

0

Vl(Xs)h
l
k(s)ds. (5.9)

Recall that J(t) = ∇Xt, then

dJ ij(t) = ∂lV
i
k (Xt) J

l
j(t) ◦ dωkt + ∂lV

i
0 (Xt)J

l
j(t)dt, J(0) = I. (5.10)

Let Z(t) : Ω→ Rd×d be the solution to

dZi
j(t) = −Zi

l (t)∂jV
l
k (Xt) ◦ dωkt − Zi

l (t)V
l

0 (Xt) dt, Z(0) = I, (5.11)

By Itô’s formula, one can verify that

d(Z(t)J(t)) = Z(t) ◦ dJ(t) + dZ(t) ◦ J(t) = 0,

which yields that Z(t) = J−1(t).

Proposition 5.2.2.

DkXt = J(t)

ˆ t

0

J−1(s)V (Xs)hk(s)ds (5.12)

Consequently,

γXt = 〈DXt, DX
T
t 〉 = J(t)

ˆ t

0

J−1(s)V (Xs)V
T (Xs)[J

−1(s)]Tds JT (t). (5.13)

Proof. By Itô’s formula and (5.10),

d

[
J(t)

ˆ t

0

J−1(s)V (Xs)hk(s)ds

]
=dJ(t)

ˆ t

0

J−1(s)V (Xs)hk(s)ds+ V (Xt)hk(t)dt
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(5.10)
= ∇V (Xt)

[
J(t)

ˆ t

0

J−1(s)V (Xs)hk(s)ds

]
◦ dωt

+∇V0(Xt)

[
J(t)

ˆ t

0

J−1(s)V (Xs)hk(s)ds

]
dt+ V (Xt)hk(t)dt

Therefore, t 7→ J(t)
´ t

0
J−1(s)V (Xs)hk(s)ds satisfies the same equation as DkXt, which

yields (5.12).

Set

C(t) :=

ˆ t

0

J−1(s)V (Xs)V
T (Xs)[J

−1(s)]Tds.

5.3 Hörmander’s Theorem

Let U(x) =
∑n

i=1 U
i(x)∂i = U i(x)∂i, V (x) = V i(x)∂i. Define the Lie Bracket [U, V ] as:

[U, V ](x) := U i(x)∂i(V
j(x))∂j − V i∂i(U

j(x))∂j = [U i∂iV
j − V i∂iU

j](x)∂j

Define
S0 = {Vi : i > 0}, Sk+1 = Sk ∪ {[U, Vj] : U ∈ Sk, j > 0},

and
V k = span{V : V ∈ Sk}.

We say that the vector fields V0, V1 · · · , Vn satisfy the parabolic Hörmander condition⋃
k>0

V k(x) = Rd, ∀x ∈ Rd (H)

Why we consider this kind of condition?

Theorem 5.3.1 (Stroock-Varadhan’s support theorem). The law of the solution to (5.1)
on path space is supported by the closure of those smooth curves that, at every point (t, x),
are tangent to the hyperplane spanned by {V̂0(x, t), · · · , V̂N(x, t)}, where we set

V̂0(x, t) =

(
V0(x)

1

)
, V̂j(x, t) =

(
Vj(x)

0

)
, j = 1, 2 · · ·N.

For a smooth manifold M, recall that E ⊂ TM is a smooth subbundle of dimension
d if Ex ⊂ TxM is a vector space of dimension d at every x ∈ M and if the dependency
x → Ex is smooth. (Locally, Ex is the linear span of finitely many smooth vector fields
on M.) A subbundle is called integrable if, whenever U, V are vector fields on M taking
values in E, their Lie bracket [U, V ] also takes values in E. With these definitions at
hand, recall the well-known Frobenius integrability theorem from differential geometry:

Theorem 5.3.2. Let M be a smooth n−dimensional manifold and let E ⊂ TM be a
smooth vector bundle of dimension d < n. Then E is integrable if and only if there
(locally) exists a smooth foliation of M into leaves of dimension d such that, for every
x ∈M, the tangent space of the leaf passing through x is given by Ex.
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5.3 Hörmander’s Theorem

In view of this result, Hörmander’s condition is not surprising. Indeed, if we define
E(x, t) =

⋃
k>0 V k(x, t), then this gives us a subbundle of RN+1 which is integrable. Note

that the dimension of E(x, t) could in principle depend on (t, x), but since the dimension
is a lower semicontinuous function, it will take its maximal value on an open set. If, on
some open set, this maximal value is less than n+ 1, then support theorem tells us that,
there exists a submanifold (with boundary) M− ⊂ M of dimension strictly less than n
such that T(y,s)M− = E(y,s) for every (y, s) ⊂M− . In particular, all the curves appearing
in the Stroock-Varadhan support theorem and supporting the law of the solution to (1.1)
must lie in M− until they reach its boundary. As a consequence, since M− is always
transverse to the sections with constant t, the solutions at time t will, with positive
probability, lie in a submanifold ofM of strictly positive codimension. This immediately
implies that the transition probabilities cannot be continuous with respect to Lebesgue
measure.

Theorem 5.3.3. Consider (5.1) and assume that all vector fields have bounded derivatives
of all orders. If it satisfies(H), then its solutions admit a smooth density with respect to
Lebesgue measure and the corresponding Markov semigroup maps bounded functions into
smooth functions.

We only need to prove detCt ∈ L∞−.
We need the following useful lemma.

Lemma 5.3.4. Let M be a random, symmetric, positive semidefinite matrix with entries
in L∞−. Assume that for p sufficient large, there exists a constant Cp and an εp > 0 such
that for 0 < ε < εp we have

sup
|ξ|=1

P(ξTMξ 6 ε) 6 Cpε
p.

Then (detM)−1 ∈ L∞−.

Proof. ∀t > 1, Choose {ξ1, · · · , ξm} ⊂ SN , such that sup|ξ|=1 mink6m |ξ − ξk| 6 t−2 and

m 6 Ct2N .
∀ξ ∈ SN , we can find a vector ξk such that,

ξTMξ = ξTkMξk + ξTkM(ξ − ξk) + (ξ − ξk)TMξ > ξTkMξk − 2‖M‖t−2

So we get

{ inf
|ξ|=1

ξTMξ < t−1} \
m⋃
k=1

{ξTkMξk < 3t−1} ⊂ {‖M‖ > t}

Now,

P(‖M−1‖ > t) =P( inf
|ξ|=1

ξTMξ < t−1)

6P
(
∪mk=1 {ξTkMξk < 3t−1}

)
+ P(‖M‖ > t)

6CC2N+pt
2N t−2N−p + E(‖M‖p)t−p

6Cpt
−p
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∀q > 1,

E(detM−1)q 6E‖M−1‖q 6 C

ˆ ∞
0

tq−1P(‖M−1‖ > t)dt

6
ˆ ∞

0

1 ∧ tq−1Cqt
−q−1dt <∞.

Fixed ξ ∈ SN , define ZU(t) = ξTJ−1
t U(Xt). Using Ito’s formula,

dZU(t) =− ξTJ−1
t V ′0(Xt)U(Xt)dt− ξTJ−1

t V ′j (Xt)U(Xt) ◦ dW j
t

+ ξTJ−1
t (Xt)U

′(Xt)V0(Xt)dt+ ξTJ−1
t (Xt)U

′(Xt)Vj(Xt) ◦ dW j
t

=ξTJ−1
t [V0, U ](Xt)dt+ ξTJ−1

t [Vj, U ](Xt) ◦ dW j
t

=Z[V0,U ](t) + Z[Vj ,U ](Xt) ◦ dW j
t

=
[
Z[V0,U ](t) +

1

2
Z[Vj ,[Vj ,U ]]

]
dt+ Z[Vj ,U ](Xt) · dW j

t .

(5.14)

Before going to prove the main theorem, we need some technical lemmas.

Lemma 5.3.5. Suppose f ∈ C1+α([0, 1]), then

‖f‖C1 6 C‖f‖
α

1+α

C0 · ‖f‖
1

1+α

C1+α .

Lemma 5.3.6. Suppose Yt =
´ t

0
σsdBs, E‖σ‖p∞ 6 Kp < ∞, then ∀α ∈ (0, 1

2
), p > 1,

E‖Y ‖pCα 6 C(K,α, p).

Proof. Choose β, p such that

α +
1

p
< β <

1

2
,

by Lemma 1.2.3,

E‖Y ‖p
Ċα
6 CE

(ˆ 1

0

ˆ 1

0

|Ys − Yt|p

|s− t|1+βp
dsdt

)
= C

ˆ 1

0

ˆ 1

0

E|Ys − Yt|p

|s− t|1+βp
dsdt.

Thanks to BDG inequality,

E|Ys − Yt|p 6 CE
(ˆ t

s

‖σr‖2
∞dr

)p/2
6 Cp|s− t|p/2.

Combining the above inequalities,

E‖Y ‖pCα 6 C

ˆ 1

0

ˆ 1

0

|s− t|−1−βp+p/2dsdt <∞.
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5.3 Hörmander’s Theorem

Suppose U is a smooth vector field with bounded derivatives of all orders. By the
above lemma, it’s easy to see

‖ZU‖Cα ∈ L∞−.

Definition 5.3.7. Let {A}ε∈(0,1), {B}ε∈(0,1) be two family of random events.
Aε →ε Bε means ∀p >> 1, there exists a constant Cp, such that,

P(Aε \Bε) 6 Cpε
p.

Lemma 5.3.8 (Quantitative version of Doob-Meyer’s decomposition). Let W be a d−dimensional
Wiener process, a and b be R respectively Rd− valued adapted processes such that, for
α < 1/2, we have ‖a‖α, ‖b‖α ∈ L∞−. Moreover, let Z be defined by

Zt = Z0 +

ˆ t

0

a(s)ds+

ˆ t

0

bj(s)dW
j
s .

Then there exists a constant r ∈ (0, 1) such that

{‖Z‖∞ < ε} →ε {‖a‖∞ < εr} ∩ {‖b‖∞ < εr}.

Proof.

Z2
t = Z2

0 +

ˆ t

0

(2asZs + |b(s)|2)ds+

ˆ t

0

2bj(s)ZsdW
j
s . (5.15)

‖a‖α ∈ L∞− → {‖a‖∞ 6 ε−1/4} →ε ∅. Hence, {‖Z‖∞ 6 ε} →ε {‖
´ ·

0
2asZsds‖∞ 6 ε3/4}.

Similarly {‖Z‖∞ 6 ε} →ε {‖
´ 1

0
|bj(s)Zs|2ds‖∞ 6 ε3/2}. Using exponential martingale

inequality, {∥∥∥ˆ 1

0

|bj(s)Zs|2ds
∥∥∥
∞
6 ε3/2

}
→ε

{∥∥∥ˆ ·
0

2bj(s)dW
j
s

∥∥∥
∞
6 ε2/3

}
.

From (5.15), we get

{‖Z‖∞ 6 ε} →ε

{ˆ 1

0

|b(s)|2ds∞ 6 ε2/3

}
→ε

{ˆ 1

0

|b(s)|ds 6 ε1/3

}
.

Combining the above relation, (5.3.5) and {‖b‖1/3 6 ε−1/4} →ε ∅, we get

{‖Z‖∞ 6 ε} →ε {‖b‖∞ 6 ε1/16}.

Using the same argument, we can prove

{‖Z‖∞ 6 ε} →ε {‖a‖∞ 6 ε1/80}.
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Proof of Theorem. Notice

ξTCtξ =
d∑
j=1

ˆ t

0

|ZVj(s)|2ds. (5.16)

Using Lemma 5.3.5, we get

{ξTCtξ 6 ε} →ε {‖ZHk‖∞ 6 εq}

By Lemma 5.3.8,

{ξTCtξ 6 ε} →ε

⋂
V ∈Hk

{‖ZV ‖∞ 6 εqk}

for suitable qk > 0. Now observe that ZV (0) = 〈x, U(x0)〉. By Hörmander’s condition,
V k′(x0) = RN for k large enough. However, if V k′(x0) = RN , we can pick V ∈ V k′(x0)
such that |ZV (0)| = |〈x, V (x0)〉| > ε0, so that the right-hand-side in the above equation
is the empty set. We have thus proved {ξTCtξ 6 ε} →ε ∅. Now, using Lemma 5.3.4, we
complete the proof.
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5.3 Hörmander’s Theorem
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Appendix A

Useful facts

Lemma A.0.1 (Area formula). Consider a locally Lipschitz function f : Rd → Rd and a
Borel set A ⊆ Rd. Then the function y 7→ NA(y) := card{f−1(y)∩A}} is measurable and

ˆ
A

| det(∇f(x))|dx =

ˆ
Rn
NA(y)dy > L d(f(A)).

Consequently, for any g > 0,
ˆ
f(A)

g(y)dy 6
ˆ
A

g(f(x))| det∇f(x)|dx. (A.1)

A.1 Sobolev spaces

Let W k,p denote the Sobolev space consisting of all real-valued functions on Rd whose
weak derivatives up to order k are functions in Lp. Here k is a non-negative integer and
1 6 p <∞. The first part of the Sobolev embedding theorem states that

Theorem A.1.1 (Sobolev). If k > l, and 1 6 p < q <∞ are two real numbers such that

1

p
− k − l

d
=

1

q
,

then
W k,p ↪→ W l,q.

The second part of the Sobolev embedding theorem applies to embeddings in Hölder
spaces Cr,α.

Theorem A.1.2 (Morrey). If d < pk and

r + α = k − d

p

with α ∈ (0, 1), then one has the embedding

W k,p ↪→ Cr,α.
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A.3 Interpolation Theorems

A.2 Singular integral

Singular integrals are central to harmonic analysis and are intimately connected with the
study of partial differential equations. Singular integral is an integral operator

T (f)(x) =

ˆ
K(x, y)f(y) dy,

whose kernel function K : Rd × Rd → R is singular along the diagonal x = y.
Typical examples of integral operators are the Riesz transforms, which are a fam-

ily of generalizations of the Hilbert transform to Euclidean spaces of dimension d > 2.
Specifically, the Riesz transforms of a complex-valued function f are defined by

Rif(x) = cd lim
ε→0

ˆ
Rd\Bε(x)

(xi − yi)f(y)

|x− y|d+1
dy, i = 1, · · · d.

The constant cd is a dimensional normalization given by cd = 1
πωd−1

= Γ((d+1)/2)

π(d+1)/2 . The

limit is written in various ways, often as a principal value, or as a convolution with the
tempered distribution

K(x) =
1

πωd−1

p.v.
xj
|x|d+1

.

The Riesz transforms are given by a Fourier multiplier. Indeed, the Fourier transform
of Rif is given by

F(Rif)(ξ) = −i ξi
|ξ|

(Ff)(ξ)

A particular consequence of this last observation is that the Riesz transform defines a
bounded linear operator in L2.

Theorem A.2.1. For each i ∈ {1, · · · , d}, Ri is bounded on Lp with p ∈ (1,∞) and
satisfy weak-type (1,1) estimates:∣∣{x ∈ Rd : |Rif(x)| > λ

}∣∣ 6 Cd‖f‖1/λ. (A.2)

A.3 Interpolation Theorems

The following simple Interpolation theorem is useful.

Lemma A.3.1. 1. Let p ∈ [1,∞). There exits constant C such that

‖∇u‖p 6 C‖∇2u‖
1
2
p ‖u‖

1
2
p . (A.3)

Let α ∈ (0, α). There exits constant C such that

2.
[∇u]α 6 C[∇2u]

1
2
α [u]

1
2
α . (A.4)
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Appendix B

Some basic results of PDEs

B.1 Monge-Ampère Equation

To motivate the definition of weak solutions to (2.6), given an open set D ⊂ Rn, consider
u : D → R a convex function of class C2 satisfying (2.6) for some f : D → R+. Then
given any Borel set E ⊂ D, it follows by the area formula thatˆ

E

f dx =

ˆ
E

detD2u dx = |∇u(E)|.

Notice that while the above argument needs u to be of class C2, the identityˆ
E

f = |∇u(E)|

makes sense if u is only of class C1. To find a definition when u is merely convex one
could try to replace the gradient ∇u(x) with the subdifferential ∂u(x) and ask for the
above equality to hold for any Borel set E. Here ∂u(x) is given by

∂u(x) :=
{
p ∈ Rd : u(y) > u(x) + 〈p, y − x〉 ∀y ∈ D

}
.

This motivates the following definition:

Definition B.1.1. Given an open set D ⊂ Rn and a convex function u : D → R, we
define the Monge-Ampère measure associated to u by

µu(E) :=

∣∣∣∣∣⋃
x∈E

∂u(x)

∣∣∣∣∣
The basic idea of Alexandrov was to say that u is a weak solution of (2.6) if µu|D = ν|D.

Lemma B.1.2. Let u, v : D → R be convex functions. Then

µu+v > µu + µv and µλu = λnµu ∀λ > 0.

The following result is the celebrated Alexandrov maximum principle.
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B.1 Monge-Ampère Equation

Theorem B.1.3. Let D be an open bounded convex set, and let u : D → R be a convex
function such that u|∂D = 0. Then there exists a dimensional constant C = C(d) such
that

|u(x)| 6 C(d) diam(D)
d−1
d dist(x, ∂D)

1
d |∂u(D)|

1
d , ∀x ∈ D. (B.1)

Proof. Let (x, u(x)) be a point on the graph of u, and consider the convex “conical”

function y 7→ Ĉx(y) with vertex at (x, u(x)) that vanishes on ∂D. Since u 6 Ĉx in D (by
the convexity of u), Lemma 2.7 implies that∣∣∣∂Ĉx(x)

∣∣∣ 6 ∣∣∣∂Ĉx(D)
∣∣∣ 6 |∂u(D)|;

so, to conclude the proof, it suffices to bound |∂Ĉx(x)| from below. It is not hard to see

• ∂Ĉx(x) contains the ball Bρ with ρ = |u(x)|/diam(D)

• ∂Ĉx(x) contains a vector of norm |u(x)|/dist(x, ∂D)

Thus,

∂Ĉx(x) ⊃ B%(0) ∪ {q}, |q| = |u(x)|/dist(x, ∂D).

Since ∂Ĉx(x) is convex, it follows that ∂Ĉx(x) contains the cone C generated by q and
Σq := {p ∈ Bρ : 〈p, q〉 = 0}. Therefore

c(d)ρd−1|q| = |C| 6 |∂u(D)|.

Theorem B.1.4. Let D be an open bounded convex set, and let ν be a Borel measure on
D with ν(D) < ∞. Then there exists a unique convex function u : D → R solving the
Dirichlet problem {

µu = v in D

u = 0 on ∂D

Proof. By the stability result proved in Lemma below, since any finite measure can be
approximated in the weak* topology by a finite sum of Dirac deltas, we only need to solve
the Dirichlet problem when ν =

∑N
i=1 αiδxi with xi ∈ D and αi > 0. To prove existence

of a solution, we use the so-called Perron method: we define

S[ν] := {v : Ω→ R convex : v|∂Ω = 0, µv > ν in Ω}

and we show that the largest element in S[ν] is the desired solution. We split the argument
into several steps.

Step 1: S[ν] 6= ∅. To construct an element of S[ν], we consider the “conical” function
Cxi , that is 0 on ∂Ω and takes the value −1 at its vertex xi. The Monge–Ampère measure
of this function is concentrated at xi and has mass equal to some positive number βi
corresponding to the measure of the set of supporting hyperplanes at xi. Now, consider
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the convex function v̄ =
∑N

i=1 λCxi , where λ has to be chosen. We notice that v̄|∂Ω = 0.
In addition, provided λ is sufficiently large, Lemma below implies that

µv̄ >
N∑
i=1

µλĈxi
=

N∑
i=1

λdµĈxi
=

N∑
i=1

λdβiδxi >
N∑
i=1

αiδxi = ν.

This yields v̄ ∈ S[ν].
Step 2: v1, v2 ∈ S[ν]⇒ w := max {v1, v2} ∈ S[ν]. Set

Ω0 := {v1 = v2} , Ω1 := {v1 > v2} , and Ω2 := {v1 < v2}

Also, given a Borel set E ⊆ Ω, consider Ei = E ∩ Ωi.
Since Ω1 and Ω2 are open sets, w|Ω1 = v1 and w|Ω2 = v2,

∂w(E1) = ∂v1(E1), ∂w(E2) = ∂v2(E2).

In addition, since w = v1 on Ω0 and w > v1 everywhere else, we have

∂v1(E) ⊆ ∂w(E0).

Therefore,
µw(E) > µv1(E0 ∪ E1) + µv2(E2) > ν(E).

Step 3: u := supv∈S[ν] v belongs to S[ν]. Let wm ↑ u locally uniformly. Then µwm ⇀
∗µu. Also, we deduce immediately that u|∂Ω = 0 by construction; hence, u ∈ S[ν].

Step 4: The measure µu is supported at the points {x1, · · ·xN}. Otherwise, there
exists a set E ⊆ D such that

E ∩ {x1, . . . , xN} = ∅ and |∂u(E)| = µu(E) > 0

Therefore, ∣∣∂u(E)\[∪Ni=1∂u(xi) ∪ ∂u(∂D)]
∣∣ = |∂u(E)| > 0

Let x0 ∈ E and p ∈ ∂u(x0)\[∪Ni=1∂u(xi) ∪ ∂u(∂D)]. Then there exists δ > 0 such that

u > `x0,p + 2δ on {x1, . . . , xN} ∪ ∂Ω, (B.2)

where `x0,p(x) = u(x0) + p · (x− x0). Set ū := max{`x0,p + δ, u} 	 u. Notice that ū is
convex, ū > u, and it follows by (B.2) that ū = u in a neighborhood of {x1, . . . , xN}∪∂Ω.
In particular, ū|∂Ω = 0 and ∂ū (xi) = ∂u (xi), which implies that u log eqqū ∈ S[ν]. This
is a contradiction.

Step 5: µu = ν. By Step 3 and Step 4, we know that µu =
∑N

i=1 βiδxi with βi > αi.
Assume that β1 = µu(x1) > ν(x1) = α1.

Since ∂u (xj) is a convex set of positive measure, pick a vector p ∈ Rn that belongs
to the interior of ∂u (xj), define `xj ,p(z) := u(z) + 〈p, z − xj〉, and consider the function
U := u− `xj ,p. Notice that ∂U(z) = ∂u(z)− p for all z, which implies, in particular, that
|∂U (xj)| = βj and that 0 belongs to the interior of ∂U (xj). Choose δ > 0 small enough
so that

{U 6 U (xj) + δ} ∩ ({x1, . . . , xN} ∪ ∂Ω) = ∅,
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B.2 Schauder estimate

and define the function

Ũ(z) :=

{
U(z) if U > U (xj) + δ

(1− δ)U(z) + δ [U (xj) + δ] if U 6 U (xj) + δ.

Taking δ > 0 even smaller if necessary, we observe that∣∣∣∂Ũ (xj)
∣∣∣ = (1− δ)n |∂U (xj)| = (1− δ)nβj > αj.

Notice that Ũ > U and Ũ = U in a neighborhood of {x1, . . . , xN} ∪ ∂Ω. Hence,

considering ũ := Ũ + `xj ,p (see Figure 2.7 ), we see that ũ > u,

ũ|∂Ω = u|∂Ω = 0, ∂ũ (xi) = ∂u (xi) ∀i 6= j, and |∂ũ (xj)| > αj.

Thus, ũ ∈ S[v], but this contradicts the maximality of u and concludes the proof.

B.2 Schauder estimate

Let S be the Schwartz space of all rapidly decreasing functions, and S ′ the dual space of
S called Schwartz generalized function (or tempered distribution) space. Given f ∈ S ,
let Ff = f̂ be the Fourier transform defined by

f̂(ξ) :=

ˆ
Rd

e−i2πξ·xf(x)dx.

Let χ : Rd → [0, 1] be a smooth radial function with

χ(ξ) = 1, |ξ| 6 1, χ(ξ) = 0, |ξ| > 3/2.

Define
ϕ(ξ) := χ(ξ)− χ(2ξ).

It is easy to see that ϕ > 0 and supp ϕ ⊂ B3/2 \B1/2 and formally

k∑
j=−k

ϕ(2−jξ) = χ(2−kξ)− χ(2k+1ξ)
k→∞→ 1. (B.3)

In particular, if |j − j′| > 2, then

suppϕ(2−j·) ∩ suppϕ(2−j
′·) = ∅.

From now on we shall fix such χ and ϕ and define

∆jf := F−1(ϕ(2−j·)Ff), j ∈ Z.

We first recall the following useful lemmas.
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Lemma B.2.1. Let α ∈ (0, 1). For any u ∈ Cα, it holds that

1

C
sup
j∈Z

2jα‖∆ju‖∞ 6 [u]α 6 C sup
j∈Z

2jα‖∆ju‖∞, (B.4)

where

[u]α := sup
x 6=y

|u(x)− u(y)|
|x− y|α

,

and C only depends on d and α.

Proof.

Lemma B.2.2. There is a constant C = C(d, α), such that for any u ∈ C2,α,

[∇2u]α 6 C[∆u]α. (B.5)

Proof. Define

ϕkl(ξ) :=
ξkξl
|ξ|2

ϕ(ξ), hkl(x) := F−1(ϕkl)(x); ϕklj (ξ) := ϕkl(2−jξ), hklj (x) := 2jdhkl(2jx).

It is easy to see

∂klu =
∑
j∈Z

uklj :=
∑
j∈Z

ϕklj (D)f =
∑
j∈Z

hklj ∗ f,

For any k, l ∈ {1, 2, · · · , d}, there is a constant C only depending on α, d such that

‖uklj ‖∞ 6 C2−jα[f ]α, ∀j ∈ Z. (B.6)

For any x ∈ Rd, noticing hkl ∈ S (Rd) and
´
hkl = ϕ(0) = 0, we get

|uklj (x)| =
∣∣∣∣ˆ
Rd
hklj (y)f(x− y)dy

∣∣∣∣ =

∣∣∣∣ˆ
Rd
hkl(z)(f(x− 2−jz)− f(x))dz

∣∣∣∣
6
ˆ
Rd
|hkl(z)| · [f ]α|2−jz|αdz 6 C[f ]α2−jα.

By this,

|∂klu(x)− ∂klu(y)| 6
∑
j6K

|uklj (x)− uklj (y)|+
∑
j>K

|uklj (x)− uklj (y)|

6|x− y| ·
∑
j6K

‖∇uklj ‖∞ + 2
∑
j>K

‖uklj ‖∞

6C[f ]α|x− y|
∑
j6K

2(1−α)j + C[f ]α
∑
j>K

2−jα

6C[f ]α
(
|x− y|2(1−α)K + 2−αK

)
Choosing K ∈ Z such that 2−K 6 |x− y| < 2−K+1, we obtain

|∂klu(x)− ∂klu(y)| 6 C1[f ]α · |x− y|α.

So we complete our proof.
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B.2 Schauder estimate

Lemma B.2.3. Suppose f : R+ → R+, and for any 0 6 s < t 6 1,

f(s) 6 θf(t) + A(t− s)−γ +B,

for some γ > 0, then
f(s) 6 C(γ, θ)

(
A(t− s)−γ +B

)
(B.7)

Proof. Let t0 = t, ti = s+ (1− τ)τ i(t− s), where τ ∈ (θ1/γ, 1). By iteration,

f(s) =f(t0) 6 θf(t1) + A(ti − ti+1)−γ +B

6θ2f(t2) + θA(t2 − t1)−γ + θB + A(t1 − t0)−γ +B

6 · · · 6 θkf(tk) + A(1− τ)−γ(t− s)−γ
k−1∑
i=0

(θτ−γ)i +B

k−1∑
i=0

θi

6C

(
A

(t− s)γ
+B

)
.

Theorem B.2.4. Suppose

Lu = aij∂iju+ bi∂iu+ cu = f, in BR, (B.8)

and
δ|ξ|2 6 aijξiξj, (B.9)

(‖a‖L∞(BR) +Rα[a]α;BR) + (R‖b‖L∞(BR) +R1+α[b]α;BR)

+ (R2‖c‖L∞(BR) +R2+α[c]α;BR) 6 Λ.
(B.10)

Then,

[∇2u]α;BR/2 6 C
{

[f ]α;BR +R−α‖f‖L∞(BR) +R−2−α‖u‖L∞(BR)

}
.

Proof. Suppose η ∈ C∞c , η(x) = 1 if x ∈ Bρ, η(x) = 0 if x ∈ Bc
r and

(r − ρ)k‖∇kη‖∞ + (r − ρ)k+α[∇kη]α 6 C(d, k).

Let v := uη, then

aijo ∂ijv = (aijo − aij)η · ∂iju+ 2aijo ∂iu∂jη + aijo u∂ijη + (bi∂iu) · η + (cu) · η + fη.

[∇2u]α;Bρ 6[∇2v]α 6 C1

{
rα[∇2u]α;Br + (r − ρ)−α‖∇2u‖L∞(Br)

+ (r − ρ)−1[∇u]α;Br + (r − ρ)−1−α‖∇u‖L∞(Br) + (r − ρ)−2[u]α;Br

+ (r − ρ)−2−α‖u‖L∞(Br) + [f ]α;Br + (r − ρ)−α‖f‖L∞(Br)

}
There is a constant r0 ∈ (0, 1) such that C1r

α
0 6 1/4. By interpolation, there is a constant

C such that

C1

{
(r − ρ)−α‖∇2u‖L∞(Br) + (r − ρ)−1[∇u]α;Br + (r − ρ)−1−α‖∇u‖L∞(Br) + (r − ρ)−2[u]α;Br

80



+ (r − ρ)−2−α‖u‖L∞(Br)

}
6

1

4
[∇2u]α;Br + C(r − ρ)−2−α‖u‖L∞(Br)

Combing the above inequalities and B.2.3, we obtain that for any 0 6 ρ < r 6 r0,

[∇2u]α;Bρ 6 C
{

(r − ρ)−2−α‖u‖L∞(Br) + [f ]α;Br + (r − ρ)−α‖f‖L∞(Br)

}
.

Hence, by choosing ρ = r0
2

, r = r0 and using finite cover technique, we find if u satisfies
Lu = f in B1 and

λ|ξ|2 6 aijξiξj; ‖a‖Cα(B1) + ‖b‖Cα(B1) + ‖c‖Cα(B1) 6 Λ,

then
[∇2u]α;B1/2

6 C
{

[f ]α;B1 + ‖f‖L∞(B1) + ‖u‖L∞(B1)

}
.

By rescaling, it is easy to obtain our result.
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B.2 Schauder estimate
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