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Notation:

N=1{0,1,2---1}, R, = [0, 00).
£ is the Lebesgue measure on R,

S4 is the collection of all symmetric non-negative matrix in R4*?. For any ¢ € (0, 1],
Sg = {a € Si Dy = a4, 01y <a < 5_1Id}.

We use := as a way of definition.

The letter ¢ or C' with or without subscripts stands for an unimportant constant,
whose value may change in different places. We use a < b to denote that a and b
are comparable up to a constant, and use a < b (a 2 b) to denote a < Cb (a > Cb)
for some constant C.

W, is a Brownian motion staring from 0 and W, a Brownian motion staring from
x.

Tp is the first exit time of a process from domain D; or is the first hitting time of
I.
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Chapter 1

Brownian motion and Martingale

1.1 Probabilistic terminology

Let (2, F,P) be a probability space and (F,€) be a measurable space. X : (2, F) —
(E, &) a measurable map, and G a o-field C F.

When E = R, we define the conditional expectation of X given G, E(X|G), to be
any random variable Y that satisfies

(a) Y € G;
(b) for all A € G, E(X; A) = E(Y: A).

Qg : Q x & — [0,1] is said to be a regular conditional distribution (RCD) for X
given G if

(a) For each A € £, w — Qg(w, A) is a version of E(14(X)|G);
(b) For a.e. we Q, A Qg(w, A) is a probability measure.

If £=9Q, X(w)=w, then Qg is called a regular conditional probability.
The following results can be found in Durrett’s book [Durl9].

Proposition 1.1.1. (i) If G, C Gy C F, then
E[(X]G,)|6:] = E(X|G1) (1.1)
(i) Assume that X € F andY € G C F, then
E(XY|G) = E(X|9)Y. (1.2)
(111) (Jesen’s inequality) If ¢ is a convex function, then
E(p(X)|G) < »(E(X]9)). (1.3)
Proposition 1.1.2. Let Qg be a RCD for X given G. If f : E — R satisfying E|f(X)| <

oo, then

E(f(X)(G)(w) = / (@)Qo(w, ) as.
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1.2 Brownian motion

A measurable space (E, &) is said to be standard if (£, £) is isomorphic (as a mea-
surable space) to (R; B(R)).

Theorem 1.1.3. RCD ezists if (E,B(F)) is a standard measure space.

Proposition 1.1.4. Assume X >0, f: R, — R, such that f € C'(R,) and f(0) = 0.
Then

Ef(X) = /OOO FOP(X > t)dt. (1.4)

Exercise 1.1.1. If X >0, f: R, — R such that f € C*(Ry) and f(oco) = 0. Then

Ef(X)=— /OOo FOP(X < t)dt. (1.5)

1.2 Brownian motion

A stochastic process defined on (€2, F, P) taking value in F can be understood in various
ways. It involves a collection of random variables X; € E indexed by a parameter set
T (usually, T = N or R;), where X; is a measurable map from (2, F,P) to (£, B(E)
for each t € T. The parameter set T typically represents time and can be discrete or
continuous. The process can also be regard as a measurable map from (€2, F,P) to the
space of functions ET. The Kolmogorov o-field on ET is the smallest o-field making the
projections m; : ET 5 f + f(t) € E measurable. This definition ensures that a random
map 2 3w+ X .(w) € ET is measurable if its component random variables X; : Q — F
are measurable for all ¢ € T. Therefore, the mapping w +— X (w) induces a measure on
(ET,B(E™)) denoted by P. The underlying probability model (€2, F, P) is replaceable by
the canonical model (P, ET, B(ET)) with a specific choice of X;(f) = m(f) = f(t). In
simpler terms, a stochastic process is just a probability measure P on (ET, B(ET)).

Another point of view is that the only relevant objects are the joint distributions of
(X4, X4y, -y Xy, ) for every n and every finite subset I = (¢4, ts, ..., t,,) of T. These can be
specified as probability measures p; on R™. These p; cannot be totally arbitrary. If we
allow different permutations of the same set, so that I and I’ are permutations of each
other then uy and pp should be related by the same permutation. If I C I’) then we
can obtain the joint distribution of (X})c; by projecting the joint distribution of (Xj)ier
from R™ to R™ where n and n’ are the cardinalities of I and I’ respectively. A stochastic
process can then be viewed as a family () of distributions on various finite dimensional
spaces that satisfy the consistency conditions. A theorem of Kolmogorov says that this is
not all that different. Any such consistent family arises from a P on (ET, B(E™T)) which
is uniquely determined by the family (ur).

Theorem 1.2.1 (Kolmogorov’s consistency Theorem, cf. [Yan21]). Let E be a standard
measure space. Assume that we are given for every tq,...,t, € T a probability measure
Wty t, on E™, and that these probability measures satisfy:

(a). for each T € S, and A; € B(E),
Mtr--tn(Al X ... X An) = /'I/tr(l)"'tf(n)<AT(1) X ... X AT(’VZ))J
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(b). for each A; € B(E),
iyt (A1 X oo X Apy X E) = pigyt, (A1 X oo X Apy).

Then, there is a unique probability measure P on (ET,B(ET)) such that for ti,....t, €
T7A17 JAn € B(E) ]P)(f(tl) S A17 BED) f(tn> S An) = :utl,...,tn(Al X ... X An)

Definition 1.2.2. A stochastic process (Wy)icr, is a one-dimensional Brownian motion
started at 0 if

(a) Wy =0, a.s.;
(b) for all s < t,W,;—W; is a mean zero Gaussian random variable with variance t — s;
(c) for all s < t, Wy — Wy is independent of o (Wy;r < s);

(d) with probability 1 the map t — Wi(w) is continuous.

By Theorem 1.2.1, we can define a probability measure Q on R®+ (E = R, T =
R, ) such that the canonical process X;(f) = f(t) satisfies (a), (b) and (c¢). However,
whether the measure is concentrated on the space of continuous functions is not a simple
question. In fact, since T = R, is uncountable the space of bounded functions, continuous
functions, etc., are not measurable sets of R®+. They do not belong to the natural o-
field. Essentially, in probability theory, the rules involve only a countable collection of sets
at one time, and any information that involves the values of an uncountable number of
measurable functions is beyond reach. There is an intrinsic reason for this. In probability
theory, we can always change the values of a random variable on a set of measure 0, and
we have not changed anything significant. Since we are allowed to mess up each function
on a set of measure 0, we have to assume that each function has indeed been messed up
on a set of measure 0. If we are dealing with a countable number of functions, the 'mess
up’ has occurred only on the countable union of these individual sets of measure 0, which,
by the properties of a measure, is again a set of measure 0. On the other hand, if we are
dealing with an uncountable set of functions, then these sets of measure 0 can possibly
gang up on us.

Of course it would be foolish of us to mess things up unnecessarily. If we can clean
things up and choose a nice version of our random variables we should do so. But we
cannot really do this sensibly unless we decide first what nice means. We however face
the risk of being too greedy and it may not be possible to have a version as nice as we
seek. But then we can always change our mind.

Lemma 1.2.3 (Fractional Sobolev inequality). Let D be an open set in R™, p > 1 and
s € (n/p,1). Let f: D — R? be a measurable function. Assume

[V,
pxp T =yt '

Then there exists a version of f, say f, such that

|f(z) — ( f(x) — fy)l5 )”p
e ey |:v—y|w //M oy ) (16)

Here C' only depends on n,s,p and D.




1.3 Martingale

Theorem 1.2.4. Let [ =[0,T], and let p > 1 and 5 € (1/p,1). Assume (X;)ies satisfies
E|X, - X,P <c|t —s|'™,  Vtsel. (1.7)

Then there ezists a version of X,Y (for eacht € I, P(X; =Y;) = 1) such that

where a € (0,5 —1/p), K = K(«, 8,p,¢,I,w) and EK? < co.

Proof. Regard X as a measurable function from € x I to R?. By Lemma 1.2.3, there is
a null set /' C Q and a measurable function Y : Q x I — B, such that for each w ¢ N,

L ({tel:Yi(w) # Xi(w)}) =0,

and Y (w). is a constinous function. Moreover,

Vo Ky o= ([ B o) " )

By Fubini theorem, there exists a Z-null set N C I, such that for each t ¢ N, P(X, #

Y;) = 0. For any ty € N, by (1.7), one can see that X;, # Xt,- On the other
Stp—to

hand, X, = Y., = Yy, so we have X, = Y,,. Therefore, Y is a version of X. O

Thanks to Theorem 1.2.4 and the discussion after Definition 1.2.2, we get the existence
of Brownian motion.

1.3 Martingale

1.3.1 Discrete time

Let (2, F,P) be a standard probability space. Let F,, (n € N) be an increasing sequence
of o-fields. A sequence of random variables X, is adapted to F,, if for each n, X,, is F,
measurable. Similarly a collection of random variables X; (¢ € R;) is adapted to F; if
each X, is F; measurable. We say the filtration F; satisfies the usual conditions if F;
is right continuous (i.e., F; = F;, for all ¢, where F;y = N.soFiie ) and each F; is
complete (i.e., F; contains all P-null sets).

Wesay 7: Q — N (R )U{oo} is a stopping time if 7 satisfying {r < n} € F, ({7 <
t} € F), foreach n € N (t € Ry).

F. is a o-field containing all measurable sets A € cF such that AN {r < n} €
Fo (AN{r <t} e F)forallneN (t e R,).

Definition 1.3.1. Let X; be a real-valued F;-adapted processes. If for each t and s <
t, X; is integrable and E(X|Fs) > (<)Xs a.s., then we call X; is a submartingale
(supermartingale). We say X, is a martingale if it is both a submartingale and a
supermartingale.
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Suppose M,, is a martingale, and ¢ is convex function. Assume that E|p(M,)| < oo,
in the light of Jesen’s inequality, ¢(M,,) is a submartingale.

Example 1. Let &, &, -+ be a sequence of i.i.d random variable. Set X, == & and
fn = 0'(507 e €n>

Below we recall the results about discrete time martingales and submartingales that
will be used. The proof of the subsequent statements can be found in Durrett’s book
[Durl9], and in many other books dealing with discrete time martingales.

Theorem 1.3.2 (Doob). If X,, € F, is a submartingale then it can be uniquely decom-
posed as X,, = M,, + A,,, where M,, € F,, is martingale, Ag = 0, A1 > A, almost surely
and A,, is F,_1-measurable.

Proof. Let
Ag=0, Ay:=> E(X;— X 1| Fi)
k=1

and .
My =X, — Ay =Xo+ > [(Xp = Xp1) = B(Xy — Xp [ Fimr)] -
k=1
Then M,, and A,, are the desired processes. The proof for the uniqueness result is easy. [J

The following theorem lies at the basis of all other results for martingales.

Theorem 1.3.3 (Doob’s Optional stopping theorem). Assume that o and T are two
bounded stopping time, and X, is a submartingale, then E(X |F,) = Xonr.

Lemma 1.3.4. Let X,, be a submartingale, and 7 be a bounded stopping time and 7 < K
(constant). Then

(i) E(Xk|Fr) = X+
(11) Xopnn is a F-submartingale.
Proof. (i). for each A € F,, we will show that E(Xx; A) > E(X;;A). In fact,
K K
E(X;;A) =Y EXuAn{r=k}) <Y EXxAn{r=k})=E(Xg;A).
k=0 =

—_——
ceFk k=0

(ii). For each A € F,_1,

E(Xonn; A) =E(Xon; AN{T <n =1} + E(Xop; AN{T >n —1})
=E(X ; An{r<n—-1}) +EX,;An{r >n—-1})
~ —— J
>E(X; An{r<n—-1}) +EX,—1;AN{r >n—1})
=E(X A(m-1); 4).
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1.3 Martingale

Proof of Theorem 1.3.3. By the above lemma, we have E(X|F,) = E(Xgn-|Fs) = Xonr-
]

Theorem 1.3.5 (Doob’s inequality). Let M, be a martingale. If M} = sup,, | M|,
then
P(M: > \) < N'E(|M,|; M > ).

Proof. Let 7 = inf{k : |M}| > A}. Noting that {M* > A\}} = {7 < n}, we have

AP(M: > \) =AP(r < n) < B(|M,|;7 < n)
SE(IMrpnl; 7 < n) < E(|M,]; My > A).

]

Corollary 1.3.6. Let M, be a martingale and T be a stopping time. For each p > 1,
E|M;|P < CE|Mp|P.

Let a < b. Set oy =inf{n > 0: X, < a}, m =inf{n > oy : X,, > b}, 0o = inf{n >
T M, <a}, m=1inf{n > o0y: X,, 2 b}, ..., and Uy := max{k : 7, < N}.

Lemma 1.3.7 (Upcrossing inequality). Suppose that Xy is a submartingale, then
(b—a)EUy(a,b) <E(Xy —a)'.
Proof. We only prove the case that a = 0 and X, > 0.

Xy = Xgan + Z X1aN — Xg;an + Z \)(S¢+1/\N - XTi/\]\i

v i=1 i=1 R .
Z ~ ~ < positive expectation

Upcrossing inequality leads to

Theorem 1.3.8. If X,, is a submartingale such that sup, EX;7 < 0o, then X,, converges
a.s. asn — Q.

Corollary 1.3.9. Suppose that X € LY(P,Q), F, 1 Fuo, then

lim E(X|F,) = E(X|F), a.s. andin L'

n—oo

1.3.2 Continuous time

All of the above results also hold for all right continuous martingale (sub-
martingales) (see [Hua01]), except the Doob decomposition theorem.

The celebrated Doob-Meyer decomposition says that, under mild hypotheses, a
submartingale can be decomposed into a martingale plus an increasing process. We are
limiting ourselves to continuous submartingales, and the theorem we want to state is the
following.

12



Theorem 1.3.10. Suppose that X; is a continuous submartingale, then there exists a
unique martingale M and a unique continuous adapted process A with finite bounded
variation on each interval such that

AO - 0, Xt Mt + At

We say that M, if a local martingale if there exist stopping times 7,, 1 oo such that
X, at 18 a martingale for each n € N. A process is a semimartingale if it is the sum
of a local martingale and a process that is locally of finite bounded variation (i.e., finite
bounded variation on every interval [0,%]). We will be dealing almost exclusively with
continuous processes, so unless stated otherwise, all of our processes will have continuous
paths.

If M is a continuous square integrable martingale, then M? is a submartingale. In the
light of Doob-Meyer’s decomposition theorem, there is a (unique) increasing continuous
process, denoted by (M); such that M? — (M), is a martingale. Particularly, EM? —
EM? = E(M),. More general, if M is a local martingale, the quadratic variation
of M is the unique increasing continuous process (M); such that M? — (M), is a local
martingale.

If X; = M; + A;, where M, is a local martingale and A; has paths of locally finite
bounded variation, then (X); is defined to be (M);. If X and Y are two semimartingales,
we define

(X,Y)i= s (X +Y) = (X)e — (Y1)

N | —

Lemma 1.3.11. Let M; be a square integrable martingale (that is, M; € L* for every
t>0) Let0<s<tandlets=ty<t; <---<t, =t bea division of the interval [s,t].
Then,

n

E Y (M, - M, )" | F| =E[M} - M?| ) =E[(M, — M,)* | .].
i=1
Proof. For every i =1,...,n,

Il
H

E [(Mti — M, )’ | fs] E [( — M, )’ | ]:ti_l} | fs}

—E E [M] | Fi, ] — 2M,, \E [M,

i*1:| + Mt21;1 ‘ ‘FS]

—E[E[M} |7 |- M, | 7]

—E M2 - M}, | F]

and the desired result follows by summing over . O]

Theorem 1.3.12. Let M, be a continuous local martingale. There exists an increasing
process denoted by (M), which is unique up to indistinguishability, such that M? — (M), is
a continuous local martingale. Furthermore, for every fived t > 0, if 7" = {(t5, - ,{} ) :

13



1.3 Martingale

0=ty <t} <--- <ty =t} is an increasing sequence of subdivisions of [0,t] with mesh
going to 0, then we have

kn

(M), = lim <Mt? - Mt?_1>2 (1.8)

n—o0 4
=1

in probability. The process (M), is called the quadratic variation of M.

Lemma 1.3.13. Let M, be a continuous bounded martingale. Let 7" = {(t5,--- 1} ) :
0=1tf <ty <---<tp =T} be an increasing sequence of subdivisions of [0, T] with mesh
going to 0, then for each n,

kn

Ntn = Z MtFl (Mti/\t - Mti,l/\t)

i=1
15 a martingale, and there exists a continuous square integrable martingale Ny such that

E sup [N/ — NiJ* = 0.

t€[0,T]

Proof. 1t is easy to verify that N;* is a martingale. Let us fix n < m and evaluate the
product E (N2NZF). This product is equal to

SN E|My, (Mg~ My ) M (Mip — Mg, )|
L

In this double sum, the only terms that may be nonzero are those corresponding to

indices ¢ and j such that the interval (t;’ll, t;”] is contained in (t?fl, tﬂ. Indeed, suppose

that ¢} <7, (the symmetric case t]* <t} is treated in an analogous way).
Then, conditioning on the o-field Fm , we have

E My, (Mg — My, ) My, (M — My )|

—E | My, (M = My, ) My B | My = My | Fin || = 0.

For every j = 1,..., ky,, write 4, ,,(j) for the unique index 4 such that (tm tm] C

J=17g
( L ﬂ It follows from the previous considerations that

E[N{Nf]= ) E [Mt;al (Mt? - Mt;u) Mep <Mt;-“ - Mt;&)] :

1<]<km 77;:7:n7m (])

In each term E [Mt;il (Mt? — Mt?&) Mt;’ll (Mt;n — Mt;.'i1>:| , we can now decompose

My = My = (Mg — M, )
kiin,m(k)=i

14



and we observe that, if &k is such that i, ,,(k) = ¢ but k # j,
E My, (M — My ) My, (M = My )| =0

(condition on Fm if k> j and on Fm ik < ). The only case that remains is k = j,
and we have thus obtained

2
E[N}NFl= )  E {Mt;thgm (Mt;-" - Mt;-tl) } :

1<i<km i=in,m(§)

As a special case of this relation, we have

BIORS] = 3 B M, (Mg M)

1<j<km
Furthermore,
I 2
E[(Np)]= Y E Mg (Mt? —Mt;z_l) }
1<i<kn -
2
= > E an_lE[<Mt7—Mtf_l> |¢%2_1H
1<i<kn Z '
2
- S e, X B|(p o) 5
1<i<kn, | Jln,m(])zl ’

2
- 2. E {Mf (Mey = My, ) } ,

1<j<hkm i=in,m(J)

If we combine the last three displays, we get

E[(N}—NM? =E Z <Mt;al - Mt;”l)g (M%” - Mt}”l)Q

Using the Cauchy-Schwarz inequality, we then have

REE
sup (Mtlil — Mt?il) ]

1<j<k77l 7i:in,m (])

< E (Z (Mt;n—Mg;l)Q)

1<i<km

E[(N} - NP’ <E

07 1/2

By the continuity of sample paths (together with the fact that the mesh of our subdi-
visions tends to 0 ) and dominated convergence, we have

lim E

n,m—00,n<m

4
sup (Mt;gl - Mt;gl) ] = 0.

15



1.3 Martingale

To complete the proof of the lemma, it is then enough to prove the existence of a finite
constant C' such that, for every m,

2

2

B (§;<M¢_M%>) c
1<j<km

Let A be a constant such that |M;| < A for every ¢t > 0. Expanding the square and
using Proposition 3.14 twice, we have

E (Z (J\@jn—Mt?@l)Q)2

1<j<hnm
4 2 2
=B > (Myp—Myp ) |+2B] S (M= My, ) (Mg — My, )
1< <km 1< <k<km
2
<ure| 3 (o - )|
1<y<km
km—1 9 km 9
r23 B (a0 ) B | 3 (=202} 7|
j=1 k=j+1
2
—1aE | > (M — My, ) ]
1<i<km
km—1

2 2
+2) E [(Mt;_n - M%) E {(]\/[T - Mt;n> | %;,n”
j=1

2
<RAE| Y (Myp - M) ]
1< <km
= 12A%E [(Mr — Mp)?]
< 48A*
Thanks to Doob’s inequality, we obtain our assertion. O

We now return to the proof of the theorem.

Proof of Theorem 1.3.12. Assume that M is a continuous bounded martingale with M, =

0. Note that i

]\@2 — 2N = Z(Mti/\t - Mti—l/\t)2
i=1
are nondecreasing along the finite sequence (t',0 < @ < k,). By passing to the limit n —
oo along the sequence (ny),-,, we get that the sample paths of M?— 2Y; are continuous
and nondecreasing on [0,7], and it is a martingale. It follows that we can define an
increasing process Al such that AT = M2 —2Y; for every t € [0, T] and clearly M? — AT is

16



a martingale. It is now standard to verify that A7 and A7" are coincide when t < T'AT".
It follows that we can define an increasing process (M) such that (M), = AT for every
t €[0,7] and every T > 1, a.s., and clearly M? — (M), is a martingale. By fact that N7
converges in L? to Np = % (M% — A%), we get that

kn 9
Yim 32 (Mg = My ) = (M)
j=1

in L?. This completes the proof of the theorem in the case when My, = 0 and M is
bounded.

Let us consider the general case. Writing M; = Mg+ my, so that M? = Mg +2Mym, +
m?, and noting that Mym; is a continuous local martingale, we see that we may assume
that My = 0. We then set

Tp =1nf {t > 0: | M| > n}

and we can apply the bounded case to the stopped martingales M™. Set AlY = (M™).
The uniqueness part of the theorem shows that the processes A}J}ij] and Ain] are indistin-
guishable. It follows that there exists an increasing process A such that, for every n, the
processes A;nr, and Al[gn] are indistinguishable. By construction, M2 . — Asn-, is a mar-
tingale for every n, which precisely implies that M? — A; is a continuous local martingale.
We take (M); = A;, which completes the proof of the existence part of the theorem.
Finally, to get (1.8), it suffices to consider the case My = 0. The bounded case then
shows that (1.8) holds if M and (M), are replaced respectively by M™ and (M )., (even
with convergence in L? ). Then it is enough to observe that, for every ¢t > 0, P (t < 7,,)
converges to 1 when n — oo. O]

1.3.3 Some applications

For an example of a discrete martingale, let Q@ = [0, 1], P Lebesgue measure, and f an
integrable function on [0, 1]. Let F,, be the o-field generated by the sets

([k/2°, (k +1)/2") k= 0,1,...,2" — 1} .

Let f, = E[f | F]. If [ is an interval in F,,, shows that

fn(af):ﬁ/lf(y)dy ifxel.

fn is a particular example of what is known as a dyadic martingale. Of course, [0, 1]
could be replaced by any interval as long as we normalize so that the total mass of
the interval is 1. We could also divide cubes in R? into 2¢ subcubes at each step and
define f,, analogously. Such martingales are called dyadic martingales. In fact, we could
replace Lebesgue measure by any finite measure u, and instead of decomposing into equal
subcubes, we could use any nested partition of sets we like, provided none of these sets
had p measure 0.

Exercise 1.3.1. Show that the martingale convergence theorem implies that f, — f, a.e.
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1.3 Martingale

The martingale convergence theorem also provides the basis of the Calderén-Zygmund
lemma. We give the standard proof, phrased in martingale language.

Lemma 1.3.14 (Calderén-Zygmund). Let f > 0 be integrable. Let o > 0. There ezists a
closed set F' and countably many pairwise disjoint open cubes Q; such that |F°A U; Q;| =
0,f <« ae onF, and for each i,

< 1
(8]
Qi Jo,

<[

Proof. First of all, note that the last assertion is a consequence of (4.9), since (4.9) implies
|Qil < [y, f/a. Summing over i then gives [U;Qi < [, o, [/ < [ f/a
Suppose next that R is a cube with |R|™" [, f < a/2 and look at the dyadic mar-
tingale f, = E|[f|F,], where F, is the partition of R into 2"¢ equal cubes. Let
= inf{n: f, > a}. Note by our assumption on R that 7" > 0. For each n,(T" = n) is
the union of cubes in F,,, and the boundary of (T' = n) has measure 0 . Let

f<2doz

Moreover,

Fe = J(int(T = n)).

n

Then F'is closed. If n < T, then f, < a. By the martingale convergence theorem,
n (I = oo) we have f = lim, f, < «a. Since F differs from the set (T' = o0) =
(T < 00)¢ = (Up(T =n))° by a set of measure 0 , then f < o a.e. on F.

If @ is one of the cubes in F,, contained in (T"=n) and z € int(Q), then

1
@/Qf_fn(x)/a

By our definition of 7', f,,_1(z) < «a. Let @ be the element of F,_; containing Q).

Then since |Q’| = 2¢|Q],
f< < 2%.
!Ql/ |Q’| Q’

Finally, take ng large enough so that | f||1/2"% < a/2. We will take each cube R;
that has side length 2" and vertices at integer multiples of 2"° and decompose R; into
F; and Q] as above. If we then let F' = U;F}, we have our result. O

We already observed that as a consequence of Kolmogorov’s continuity theorem, the
Brownian paths are a-Holder continuous for every a &€ (0, %) The next proposition,
which is known as the law of iterated logarithm shows in particular that Brownian paths

are not %—Hélder continuous.

18



Theorem 1.3.15 (law of iterated logarithm). Let (By)i>0 be a Brownian motion. For
s =0,

By —
liminf —————— 1,limsupg =1| =1
=02t log logt =0 [2tloglog 1

Proof. Thanks to the symmetry and invariance by translation of the Brownian motion, it
suffices to show that:

| B, .\ _
P | limsup ————==1| = 1.
=0 /2tloglog }
Let us first prove that
By

P | limsup <1]| =1

=0 /2tloglog
Let us denote h(t) = 4/2tloglog % Let o, 8 > 0, from Doob’s maximal inequality applied

2
to the martingale (eaBt—7t> , we have for t > 0:
>0

a2
P (sup (B — —s) > 5) (sup eBs= T8 6“5) <e P,
0<s<t 0<s<t

Let now 0,6 € (0,1). Using the previous inequality for every n € N with ¢t = 0", o =
(1+5 ") 8= $h(6™), yields when n — +o0,

(14 0)h(0™) Lo\ 1
P (Oign (Bs Sgn s| > 2h(¢9 )] =0 5 )

Therefore from Borel-Cantelli lemma, for almost every w € Q, we may find N(w) € N
such that for n > N(w),

sup (Bs(w) - Ms) < 1h(@”).

0<s<0m 20m 2

But,

—_

sup (Bs<w> - %) < nom)

0<s<o™ 2

implies that for 7! <t < 6,

1 (24 0)h(t)
Bi(w) < sup B, —(2+0Hh(O") < —F=——.
(@) < sup Bilw) < 52+ 0)h(E") 20
We conclude:
P | limsup B 2 +o = 1.

=0\ /2tloglog 2\/_
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1.3 Martingale

Letting now 6 — 1 and 6 — 0 yields

B
P limsup—t <1 =1
=0 /2tloglog
Let us now prove that
B
P | limsup L =>1] =1

=0 /2tloglog

Let 6 € (0,1). For n € N, we denote
A, = {w, B (w) — B (w) > (1 — \@)h(@”)} .

Let us prove that > P(A,) = 400. The basic inequality

too 2 a a2
e rdu >z ——e 7,
a 1+a

implies

with

n:

When n — +o0,

therefore,
Z P(A,) = +o0.

As a consequence of the independence of the Brownian increments and of Borel-Cantelli
lemma, the event

Bgn — Bgnsr = (1 — VO)h(0")

will occur almost surely for infinitely many n’s. But, thanks to the first part of the proof,
for almost every w, we may find N(w) such that for n > N(w),

Bgni1 > —2h(0"1) > —2vV0h(6™).

Thus, almost surely, the event By > h(6")(1 — 3v/6) will occur for infinitely many
n’s. This implies

P limsupL>1—3\/§ = 1.

=0\ /2tloglog
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We finally get

B
P limsup—t >1)] =1
=0 /2tloglog
by letting 6 — 0. [

As a straightforward consequence, we may observe that the time inversion invariance
property of Brownian motion implies:

Corollary 1.3.16. Let (B;)i=0 be a standard Brownian motion.

A . Bt . Bt
Pll f— = _1.1 —=1] =1.
(%g—i—ltl;lo V2tloglogt A V2tloglogt )

1.4 Stochastic Integral

From now on, unless stated otherwise, our processes have continuous paths.
Let M, be a square integrable martingale, 0 =t < t; < --- < t, =T and Hy(w) =
S Fi(w) 1, 4,,1(s), where F; is bounded and JF; -measurable. Define

n—1

/ HdM, = F(My,,, — Min,)-
1=0
Then
Lemma 1.4.1. t — fot H,dM, is a L?*-martingale. Moreover, we have the following Ité
1sometry:
t 2 t
E (/ Hsd]\/[s> :E/ HZd(M),. (1.9)
0 0
Proof.

1
E ( / HSdMS) EZ HP (M, — M,)* + 2B H, Hy (M, — M,)(M,,,, — M)
0

1<J

= Il + IQ.
I =) EE (H}(M,

i+l

:ZEHZ(<M>M+1 - <M>t1) = E/o H§d<M>

M\F) = 3B (R (M, — M) )]

I =2) E[H,H,(M,

i<j

— My,)E ((Mthrl - Mtj)|}—tj)] =0

141
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1.5 Tto’s formula and its applications

1 2 1
E (/ Hsd]\/[s) = E/ Hfd(M}s.
0 0

b fy HodWe = 2000 Hi (Wi

Therefore,

i1 — Wiag,) is a continuous martingale. ]

We then can use this to extend the above construction to more general Hy satisfying
f(f H?d{M), < oo by taking limits in L?. For general continuous local martingale, we can
employ standard localization argument to define the above integral. For X; = M, + A;, a
semimartingale, fot H,dX; is given by

t t t
/ HdX, = / H,dM, + / H,dA,,
0 0 0

where the first integral on the right is a stochastic integral and the second integral on the
right is a Riemann-Stieltjes integral.

. t
</ HdeS> = [ H:d(M),.
0 ¢ 0

t t
/ K dN; :/ K H,dM,
0 0

1.5 Itd’s formula and its applications

Proposition 1.4.2.

Let N, = ) H,dM,

1.5.1 Applications in martingale theory
We list some important results in stochastic calculus.

Theorem 1.5.1 (It0’s formula). If each X} (for eachi € 1,---d}) is a continuous semi-
martingale and [ € C*(R?), then

f(X:) = f(Xo)
t d ¢ d
:/0 ;&f (Xs>dX§+%/o i;aijf(Xs)d<Xi’Xj>s (1.10)

(see [HuaOl, Theorem 13.5]).

It is often useful to use the language of Stratonovitch’s integration to study stochastic
differential equations because the Ito’s formula takes a much nicer form. If M; is an F;-
adapted real valued local martingale and if H; is an F;-adapted continuous semimartingale

satisfying P (fOT H,d{(M), < oo) = 1, then by definition the Stratonovitch integral of H;
with respect to M, is defined as

T T 1
/ HtOth :/ thMt+§<H, M>T
0 0
22



By using Stratonovitch integral instead of [to’s, the Ito formula reduces to the classical
change of variable formula.

Theorem 1.5.2. Let M; be a d—dimensional continuous semimartingale. Let now f be a
C? function. We have

(M) :f(MO)+/O Oif(X,)odM!, t>0.

Theorem 1.5.3 (Burkholder-Davis-Gundy inequalities). If M is a continuous martingale
with My =0, and 7 is a stopping time, then

E sup |M|P =, E(M)??  p e (0,00) (1.11)

T )
te[0,7]

Proof. Step I: for any p > 2, by Ito’s formula
T -1 T
= p [ sea) a2 anans+ 222 [z,
0 0

By Doob’s inequality and Holder’s inequality,
E(M;)? SEIM P <, B((M))"~*(M),)
<(E(MZ))'7H(BM)?) 5

Step 2: using Lenglart’s domination inequality, we can get the proof for the case p € (0, 2).
We proceed now to the proof of the left hand side inequality. We have,

t
M? = (M), +2/ M,dM,.
0

Therefore, we get

E ((Mﬁ) < B(ML)P + ( sup

o<t<T

By using the previous argument, we now have

(OitffT ) < CE ((/OT M d<M>S)p/4>

1/2
<CE ((M%)”/2<M>’%/4) < CEOGNY (BO0Y?)
<SEE(ME) + CoE(MP? < ¢.

As a conclusion, we obtained that d n

Proposition 1.5.4 (Lenglart). Let X; be a positive adapted right-continuous process and
A; be an increasing process. Assume that for every bounded stopping time T, E(X, |

Fo) < E(A, | Fo). Then, for every k € (0,1),

2—kK
EX* I€<
(Xi)* < T

E (A%).
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1.5 Tto’s formula and its applications

We shall use this lemma to prove the following Another approach to proving (1.11) is
utilizing ”good-\" inequality (cf. [RY13]).

Theorem 1.5.5 (Lévy’s theorem). If X; is a d-dimensional % -adapted process, each of
whose coordinates is a continuous local martingale, and (X', X7), = §;;t, then X, is a
d-dimensional .7 - Brownian motion.

Proof. Let ¢ € R Then ¢ - X, is a continuous local martingale with quadratic variation
(§-X)y = |€|*t. By Ito’s formula, exp(i&- X; +3|£|*t) is a continuous local martingale. This
complex continuous local martingale is bounded on every finite interval and is therefore
a (true) martingale, in the sense that its real and imaginary parts are both martingales.
Hence, for every s < t,

E [exp (ié X+ %!&Ft)' fs] —exp (if X %\él%)
Thus,
B fexp i€ (X, ~ X.))| £l = xp (5l€P(t ).

This implies X; — X, is independent with F, and X; — X, ~ N (0,¢ — s).
Finally, X is adapted and has independent increments with respect to the filtration
Z so that X is a s-dimensional .%-Brownian motion. O

Let M, be a continuous local martingale with My = 0. Set & (M), := exp(M;—(M)+/2).

Lemma 1.5.6. &(M); is a continuous local martingale, and is the unique solution to
dXt - Xthta XO - 1

Theorem 1.5.7 (Girsanov theorem). Let X; and M; be two continuous local martingales
under P with My = 0 P-a.s.. Assume that &(M), is a martingale, we define a new
probability measure Q by setting the restriction of dQ/dP to F; to be &(M);, then X; —
(X, M), is a martingale under Q and the quadratic variation of Xy is the same under P

and Q.

Proof. By localization, we can assume X is a martingale. Set Y; = X; — (X, M),. We
only need to verify that ;& (M), is a martingale under P. By It6’s formula,

AV, (M), =& (M) dX, — &M, d(X, M)y + Y,&(M),dM, + d(X, E(M)),
—&(M);dX, + Y,&(M),dM,.

Therefore, Y;& (M), is a martingale, which implies
Bq(Vii A) = Bq(Vii A), VA€ 7,

1.e.
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Theorem 1.5.8 (Dambis-Dubins-Schwarz). Let M be a continuous local martingale such
that (M) = 00. There exists a Brownian motion B such that

Mt — B(M)t
The proof of Dambis-Dubins—Schwarz’s Theorem can also be found in [Hua01].

Theorem 1.5.9 (Exponential martingale inequality). Let M; be a continuous martingale,
7 a bounded stopping time, then

2
P (sup |M;| > X & (M), < [L) < 2e 2

t<t
We need

Lemma 1.5.10. Let W be a 1-dimensional Brownian motion. Then for any \,t > 0

2
P <sup |W| > )\) < 2w

s€0,t]

Proof. Let X; = Wil with ¢ > 0. Since z — el is a convex function, X, is a sub-
martingale. By Doob’s inequality (see Theorem 1.3.5), we have

—aA\

© x2 a2t
P (W >\ =P (X]>e") <e™EX, = ¢ / 05 dp = 26T 9,
0

7t

Taking a = \/t, we obtain
2
P (W) > \) <2 2.
[l

Proof of Theorem 1.5.9. By Theorem 1.5.8, M, is a time change of a Brownian motion
W;. So the desired probability is bounded by

P (sup]Wt\ >A& (W)r < u) ,

t<T

where T is a stopping time. Since (W)7 = T, the probability above is in turn bounded
by

2
| (sup |Wy| > A) < 27,

t<p
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1.5 Tto’s formula and its applications

1.5.2 Applications in PDEs

In chapter 3, we will consider the following stochastic differential equation (SDE):
t t
X7 = x—i—/ o(X)dW, +/ b(XT)ds, =€ R
0 0

Here W is a n-dimensional BM, and ¢ : R — R%*™ and b : R? — R,
In chapter 4, we will study the following Poisson equation:

A — Lu = f,

where L = %O’ikd'jkaij + bzﬁl
The relationship between these two subjects can be easily established by It6’s formula:

Theorem 1.5.11. Suppose u is a C? function satisfying the above Poisson equation.
Then

u(x) = E/OOO e MF(XE)dt

Proof. Applying 1t6’s formula, we have du(X[) = dM; + Lu(X7)dt. So
t t

e Mu (X)) —u(z) = / e MdM, + / e M Lu(XT)ds
0 0

t
—)\/ e Mu (X7)ds.
0

Taking expection, we get what we claimed. O

Let us now let D be a nice bounded domain, e.g., a ball. Poisson’s equation in D
requires one to find a function u such that

AMt—Lu=f inD
u=20 on 0D,

where A > 0. Here we can allow A to be equal to 0. Recall that if L = A (X, is a Brownian
motion), then the time to exit D, namely, 7p := inf{t : X; ¢ D}, is finite almost surely.

Theorem 1.5.12. Suppose u is a solution to Poisson’s equation in a bounded domain D
that is C? in D and continuous on D. Assume also that

E(TD<OO):1,

where Tp = inf{t > 0: X7 ¢ D}. Then

u(z) = E/OTD e f(XT)ds.

Exercise 1.5.1. Prove Theorem 1.5.12.
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Chapter 2

Ito processes

Let a; = %atatT and

t t
Ty = / o - AW +/ beds. (2.1)
0 0

For simplicity, we always assume that a € SZ.

2.1 Support theorem

The following result is a simplify version of Stroock-Varadhan’s support theorem, which
is taken from [Bas98].

Theorem 2.1.1 (Support theorem). Suppose o, o' and b are bounded, x; satisfies (2.1).
Suppose ¢ : [0,1] — R? is continuous with p(0) = 0. Then for each & > 0, there ezists a
constant ¢ > 0 depending only on €, the modulus of continuity of ¢, and the bounds on b,
o and o= such that

P ( sup |zy — o(t)] < 6) > c. (2.2)

te(0,1]

This can be phrased as saying the graph of x; stays inside an e-tube about ¢.
To prove Theorem 2.1, we need some auxiliary lemmas.
By Lemma 1.5.10, there is a constant dy > 0 such that

inf P ( sup |[W7| < 1) > 5/6. (2.3)

‘$|<1/3 te[(),&o}

Lemma 2.1.2. Let W be a 1-dimensional Brownian motion. For any € > 0 and T > 0,
there is a constant c¢(e,T) > 0 such that

P ( sup || < ) > ofe, T).

s€[0,T
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2.1 Support theorem

Proof. We assume T = 1. By the scaling property of Brownian motion (¢~1W, 4 We-2;),
we only need to show

te0,e—2]

P < sup |[W| < 1) > c(e) > 0.

It is easy to see that infj,j<1/3 P(|W§ | < 1/3) > 1/3 (for some 0 < 6; < 1), which together
with (2.3) implies that

1
inf P sup |[W7| <1, [Wg|<1/3]| 2>, dy=0 A6 >0.
lel<1/3  \ te[0,62] 6
By the Markov property of W,
inf P| sup [W/[<1, [Wi|l<1/3]=6"
lz]<1/3 te[0,kds]
Letting k = [e725,'] + 1, we get
P sup [W[<1]> inf P| sup |[W7[<1, [WE[<1/3] =67 "% "1 = ¢(e) >0
te[0,e2] |z[<1/3 t€0,e2]
[

Lemma 2.1.3. Suppose Xqg = 0, X; = M; + A; is a continuous semimartingale with
dA;/dt and d{M);/dt bounded above by Ny and d(M);/dt bounded below by Ny > 0. If
e>0andT >0, then

P ( sup |X¢| < 5) > c(e, T, N1, Ny) > 0.
te[0,7

Proof. Let 7(t) = inf{u > 0 : (M), > t}. Then 7(t) < t, and B, = M, is a Brownian
motion due to Lemma 2.1.2. Then Y; := X,y = B, + fot bsds with |bs| < C'(Ny, Ny). Our
assertion will follow if we can show

te[0,7

P(sup |Y;|<5) >c> 0.
We now use Girsanov’s theorem. Define a probability measure Q by

T 1 /T
dQ/dP = Ep(—b) :=exp (—/ bsd By — 5/ \bs|2ds) on Fr.
0 0

By Girsanov’s theorem, under Q, Y; is a Brownian motion. Therefore,
Q(A)>c>0, A= { sup [Y;] <a}.
t€[0,T]
By Holder’s inequqlity,
¢ < Q(A) < EP(Er(=b)14) < [EPEH(-D)F[P(A)]:.
Since b is bounded, it is easy to verify that E¥£2(—b) < oco. Thisyields P(A) > ¢> 0. O
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Now we are on the point to give

Proof of Theorem 2.1. Step 1: We first consider the case and ¢ = 0. Let z € 9B, 4.
Applying Ito’s formula with f(z) = |r — z|? and setting y; = |z; — 2|?, then

¢ ¢ ¢
Y = 22 + / (s — 2) - dag + / trasds, (y); = / (s — 2) ag(zy — 2)ds <y,
0 0 0

(y); = ce? before 7 := inf{s > 0 : |y, —yo| = (£/8)?}. If we set z; equal to y; for t < 7 and
equal to some Brownian motion for ¢ larger than this stopping time, then Lemma 2.1.3
applies (for z;) and

P ( sup |xy| < 5) >P ( sup |y; — yo| < (5/8)2> =P < sup |z — 20| < (5/8)2> > 0.
te[0,7 te[0,7 t€[0,T

Step 2: Without loss of generality, we may assume ¢ is differentiable with a derivative
bounded by a constant. Define a new probability measure Q by

T 1 [T
dQ/dP = exp (—/ ¢ (s)o 1AW, — 5/ |gp'(s)as_1|2ds) on Fr.
0 0

<_ /0 <p'(5)asldWs,x>t = /Ot o (s)ds = —p(t).

So by the Girsanov theorem under Q each Component of x; is a semimartingale and
ni =} — [Tbids — ¢(t) is a martingale for each i = 1,--- ,d. Therefore,

t
B, ::/ as_ldns
0

is a continuous local martingale with (B’, BY), = d;;t under Q. Therefore B, is a d-
dimensional Brownian motion udner Q. Since

t t
x—p(t) = / o.,dBg + / bsds,
0 0

by Step 1, Q(supiejor) |2: — ¢(t)| <€) = ¢ > 0. similarly to the last paragraph of the
proof for Lemma 2.1.3, we conclude

Noting that

P(sup ]xt—cp(t)|<5> > c>0.

te[0,7)
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2.2  ABP estimate and Generalized 1to’s formula

2.2 ABP estimate and Generalized 1to’s formula

Below we will use the an analytic result due to Alexsandroff to study the Ito process given
by (2.1). For simplicity, in this section, we assume that b = 0.

Proposition 2.2.1 (Alexsandroff). Let f be a nonnegative function on By such that f¢
has finite integral over By and f = 0 outside By. Then there exists a nonpositive convex
function u on By such that

(i) for any x € By,

wor<c( [ 2 fddx)‘li ; (2.4

(ii) for any constant a € S, ¢ > 0 and x € By,
ai;Ouc(x) = dvdeta f.(x), (2.5)
where v. = v * (. and (. 1s a standard mollifier.

(2.4) is called Alexandroff-Bakelman—Pucci estimate in PDE literature.

In Appendix B.1, we provide the proof for Proposition 2.2.1 based on the very initial
knowledge of the solvability of the following Monge-Ampere equations and estimates of
its solutions:

det V*u(z) = f in D, (2.6)

which, actually, after a long development became also one of the cornerstones of the theory
of fully nonlinear elliptic partial differential equations.

Set
Tr(x) =inf{t > 0:z + 2, ¢ Br}.

Proposition 2.2.1 implies

Theorem 2.2.2 (Krylov [Kry09]). There is a constant C(d) such that for any R > 0,
and nonnegative Borel f given on R?, we have

TR(%)
E / f @+ z) {/dova dt < CA) RIS pos- (2.7)
0

Proof. By scaling, we only need to consider the case R = 1. We can assume f € C°(B;).
By It6’s formula,

tATL(z)
U (T 4 Typr (2) — Us(T) = / a? Oijue(x + x5)ds + Mynr, (2)
0

Taking expectation, letting t — oo and using Proposition 2.2.1, we get

1(x) mi(e)
/ Vdeta; fo(z + z)dt < d* / af Ojjue (v + x,)dt
0 0
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2
<= sup fu(@)] < C@)|f s = CDI |z

r€B1

Letting ¢ — 0, we obtain our assertion. O]

We should point out that here we do not need to assume a € S¢.

Remark 2.2.3. (i) (2.7) implies that if x; is a It6’s process given by (2.1) with o non-
degenerate, then the process t — f(f f(zs)ds is well-defined.

(i4) Suppose x; is a Ito process given by (2.1), a € S¢ and b satisfying |by] < b(x;) with
some b € L. In this case, Krylov [Kry21a] also proved (2.7) with || f||pap) replaced
by || fl|La-<(py for some e = (d, 6, [|b]|) >0 .

Theorem 2.2.2 as many results below admits a natural generalization with conditional
expectations. This generalization is obtained by tedious and not informative repeating
the proof with obvious changes. We mean the following which we call the conditional
version of Theorem 2.2.2 . Let v be a finite stopping time, then

TRr(x)
E / f(l’—l—q;t) \d/ det a; l{ngR(x)} dt‘f,Y] < C(d)RHfHLd(BR)’ (28)
vy

Theorem 2.2.4. There are constants C, v depending only on d, such that

E exp (,ug];%(;:)) <C, VRe(0,00) and = € Bg. (2.9)
In particular, for each X > 0,

A

P (rp(z) > \) < Cexp (—6“—R2) . (2.10)

Lemma 2.2.5.
E7z(z)" < n!(CR?*/5)".

Proof. We can assume = = 0.

We claim that
L(t) == E ([rr — ]}|F) < nl(CR?*/5)". (2.11)

Of course, (2.11) implies our desired result.
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2.2  ABP estimate and Generalized 1to’s formula

When n =1, (2.8) implies (2.11). If our assertion is true for a given n, then

)

=(n+1)! /dtl oty E <1t<t1<---<tn<7'R1tn<tn+1<TR

In—i-l(t) :(TL + 1)'E (/ 1t<t1<~-v<tn+1<TRdt1 Tt dtn—i—l

%)

%) |7

=(n+1)! /dh oty E |:1t<t1<"'<tn<TRE <1tn<tn+1<TR

]-"tn) At s

:(n + 1)E {n! / 1t<t1<---<tn<ert1 ety / E (1tn<tn+1<m ft:|

TR
:(n—i-l)E{[TR—t]iE l/ 1BR<xtn+1)dtn+1‘]?tn:| ‘th}
tn
(2.8) (2.11)
<(n+ 1O 'R?L() < (n+ DI(CR?*/8)"™.
So we get what we desired. O
Exercise 2.2.1. Let B be a one-dimensional BM. Let I = (—1,1). Prove that
Er < C"nl.
Using this to give another proof for (2.9).

Corollary 2.2.4 basically says that 7 is smaller than a constant times R2. We want
to show that in a sense the converse is also true: R? is basically smaller than a constant
times 7g.

Lemma 2.2.6. There exists C' depending only on d such that

P(tp/R*<t) < C6 ', Vt,R>0. (2.12)

Proof. We only need to prove the case R = 1. Let ¢ be a C? function that is zero at 0,
one on 0By, with 0;;¢ bounded by a constant. By It6’s formula

do(z;) = V() - 0 dWy + al 9;;(x,)dt,

which yields that
O(Tipr ) = E/MT1 a?@ij¢(x3)ds < Co .
0
Since ¢(2inr ) = Lin <y, we get P(m <t) < Co't. O
Lemma 2.2.7. There is a constant R = R(d, §) such that
E exp(—my) < 1/2.
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Proof. Let X be a non-negative random variable, and let F' : R, — R be a decreasing

function with F(co) = 0. Then
EF(X) = —/ F'(H)P(X < t)dt,
0

due to Fubini’s theorem. Set X = 7z and F(t) = e™". Then

Ee ™ = / e 'P(rp < t)dt < / e '[LA(CSTTR?))dt < Co 'R
0 0

We set R = /2C/0.

Exercise 2.2.2. For any R € (0, 00)

Eexp (— (R/R)* TR) < 1/2.

Theorem 2.2.8. For any k € (0,1), R € (0,00),2 € Byg, and A >0

E exp (—Atp(z)) < 2e"VI-RR/K

where K = R/ log2.

(2.13)

(2.14)

Proof. Recall that 7g(x) is the first exit time of 2+ x; from Bg. Let 75(x) be the first exit
time of « + x; from By _.yr(x). It follows that in the proof of , we may assume that £ =0
and x = 0. Then, as usual we may assume that R. In that case take N, to be specified
later, and introduce 7%, k = 1,--- , N, as the first exit time of x; from Byn. Also set ¥
be the first exit times of x; from By-1(xx-1) after 7871 (7871 < 4% < 7%). obviously,

>0 —m)+FEE -+ (Y =V,

By the conditional version of (2.13),
E {exp [-R°N*(v* — 7" )] | Femn } < 1/2.
Therefore,

E [exp (—R*N?7)]

<E Hexp (—R°N?*(F — 7% 1))]

N-1
<E { H exp (—R*N?* (Y — ) E [exp (—R*N2 (4N
E

< - < (1/2)N.

Choosing N = [V/A/R], we get (2.14).
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2.2  ABP estimate and Generalized 1to’s formula

Exercise 2.2.3. For any R,t > 0,

1— 2
P (TR(:C) < tRQ) < 2exp (—M) , (2.16)
where § = B(R) € (0,1).
The above estimates for first exit times have many important applications.

Proposition 2.2.9. For any k € (0,1) there is a function q(~y),~ € (0, 1), depending only
on d,0,k and naturally, also on v, such that for any R € (0,00),2 € Byg, and closed
I' C Bg satisfying |I'| > ~ |Bgr| we have

P (or(z) < 7r(2)) Z q(7),
where op(z) is the first time the process x + x; hits I'. Furthermore, q(y) — 1 as v 1 1.

Proof. By using scaling we reduce the general case to the one in which R = 1. In that
case for any € > 0 we have

71(z)
P (op(z) > n(z)) < P (7’1(1‘) = /0 1par (2 + 2) dt)

71 ()
<P (n(z) <e)+ 51E/ Iphr (x + ) dt.
0

In light of Theorem 2.2.2, we can estimate the right-hand side and then obtain
P (or(z) > mi(z)) < 2¢¢/5 4+ Ce™" | B\I'|"/*
<279 e (1 — ) e
where the constants C' depend only on d, §, k. By denoting

— 1 _; —CJe —-1/9 _ \1/d
q(7) =1 - inf (29" + Ce7H (1= 9)1).

Note that in the above result, we have no assumption on the shape of the set I'.

Exercise 2.2.4. For any k € (0,1), R € (0,00). For any x € By and Bxr(y) C Bg, we
have

P (05, 5) (%) < Tr(2)) = ((K) >0,

where (k) > 0 depends only on d,d, and naturally, also on k.
Hint: Using support theorem.

Theorem 2.2.10. Let p > d. Then there exists constants C' depending only on d,d, such
that for any A\ > 0 and Borel nonnegative f given on R? we have

E/ e MF(X,)dt < O £, - (2.17)
0
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Proof. Let v be a stopping time and 7 be the first exit time of x; from Bg(z,) after ~.
By the conditional version of (2.14),

E |exp (~A(7 = 7))

7i| < 26_\/XR/K,

Choosing R = K/+/), then
E [exp (=A(y' = 7)) ‘]—"7] <2/e< 1.

Let 70 = 0 and 7% be the first exit time of z; from Bg(z,+-1) after 7°71. As the proof for
(2.15), we have

k
Ee ™ =EJ[e?™ ) < (2/e)" (2.18)

i=1

If (2.18) holds, then

oo

E/OOo e M (1) Z

g (/ () dt‘fﬂl)]
o

2.7) 1 k-1
<Y B (ORI s e ™)

k=1
<05—IRQ—*||f||pZE‘” CoMIflly D (2/e)"
k=0

<C|Ifllp/ A d””)-
O

Theorem 2.2.11 (Generalized It6’s formula, see Krylov-[Kry09]). Let x; be a Ito process
given by (2.1). Suppose that a € S§ and b are bounded, then for any u € VVZQOCP with p > d,
we have

u(zy) — u(zo) :/0 Vu(xs)o,dWi +/0 a¥ ju(x,)ds (2.19)

Proof. We only need to consider the case u € W29 Let n € C°(B;) with [ = 1. Set
n.(x) = e (x/e) and u. = u * n.. By Ito’s formula,

t t
ue () — ue(xo) = / Vu.(xg)o,dWy —{—/ a?@,-jua(xs))ds. (2.20)
0 0

Fact: by Sobolev embedding theorem, we have

W2t Oy || Vullea < OVl 2o + [Vl 1a).- (2.21)
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2.2  ABP estimate and Generalized 1to’s formula

Since u € Cp, by letting e — 0, one sees the left-hand side of (2.20) goes to u(z;) —u(xg)
as € — 0. For the right-hand side of (2.20). By Doob’s maximal inequality

2

E sup
te[0,T

t t
/ Vue(zs)osdW, — / Vug (xs)o,dWi
0 0

T
gCE/ |V, — Vua [*(z5)ds < C||Vue — Vue||724
0

2.21)
< Cllue — uer||pza = 0, &, —=0.

Similarly, we can also show that the second integral on the right-hand side of (2.20) also
converges to fot a0;u(xs)ds O

Remark 2.2.12. The above generalized 1to’s formula also holds for Ito process given by
(2.1), where a € S¢, and b satisfying |by| < b(x;) with b € L%
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Chapter 3

Ito’s stocahstic differential equations

3.1 Strong solutions

One of the main object in this course is the following SDE:
AdX! = oL (X)dWF +0'(X,)dt, Xo=¢ € F. (3.1)

Given (Q, F,P,.Z W,), we say (3.1) has a pathwise solution if there exists a continuous
Fr-adapted process X; satisfying (3.1). We say that we have pathwise uniqueness for
(3.1) if whenever X; and Y; are two solutions, then there exists a set A/ such that P(N) = 0
and for all w ¢ N, we have X; =Y; for all .

3.1.1 Lipschitz conditions

Theorem 3.1.1 (Itd). Suppose o and b are Lipschitz. Then there exists a unique pathwise
solution to the SDE (3.1) for any Xy € L*(Q, Fo, P).

Proof. Let B denote the set of all continuous processes ¢ that are adapted to the filtration

F: and satisfy
1/2
1€l = (E sup] |§t|2> < 00.

te[0,T

Here T is a positive number which will be determined later. It is not hard to verify that
B is a Banach space. Define a map 7 on B by

T =X+ [ (e AW, + / ‘eds, te 0T
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3.1 Strong solutions

By (1.11) (or Doob’s inequality) and Lipschitz condition on the coefficients,

IT(€) = T5 =E sup [T () — T(n).l*

te[0,7)
/0 (0(£.) — o)) AW,

2

+ 2E sup
te[0,7

2

<2E sup
t€[0,T

/O (&) — blin.))ds

(1.11) T T 2
<'CE [ lote) - atmPas+ CE ( [ (e - vinias)
0 0
<O(T +T*E sup |§ —nf> = Cou(T + T?)|I€ = 13-

t€[0,T]

Choosing T' > 0 sufficiently small such that C}(T + T?%) < 1/2, then T is a Contraction
mapping on B. Banach fixed-point theorem yields that 7 has a unique fixed point, which
is the unique pathwise solution to (3.1). We can extend the same result to arbitrarily
time intervals. O

3.1.2 Definitions of solutions

1. strong solution exists to (3.1): if given the Brownian motion W; there exists a
process X; satisfying (3.1) such that X, is adapted to the filtration generated by
Wi

2. weak solution exists to (3.1): if there exists (Q, F, P, .%#; X, W;) such that W, is
a .Z-Brownian motion and the equation (3.1) holds.

3. weak uniqueness: if whenever (2, F,P,.7; X;,W,;) and (X,G,Q,¥;Y;, B,) are
two weak solutions, then the laws of the processes X and Y are equal; Joint
uniqueness in law means the joint law of (X, W) and (Y, B) are equal.

A fundamental result is

Theorem 3.1.2 (Yamada-Watanabe-Engelbert [Eng91]). The following two conditions
are equivalent.

(1) For every initial distribution, there exists a weak strong solution to (3.1) and the
solution to (3.1) is pathwise unique.

(i1) For every initial distribution, there exists a strong strong solution to (3.1) and the
solution to (3.1) is jointly unique in law.

If one (and therefore both) of these conditions is satisfied then every solution to (3.1) is
a strong solution.
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3.1.3 SDEs with Holder drifts

For strong well-posedness, if the diffusion coefficient ¢ is non-degenerate, then the condi-
tion of b can be weakened.

Theorem 3.1.3 (Krylov [Kry21b]). Suppose that a € S¢ and Vo,b € LYR?), then
equation (3.1) admits a unique strong solution.

Of course, we will not to prove such a strong result here, but a simper one below.

Theorem 3.1.4 (Zvonkin). Equation (3.1) admits a unique strong solution, provided that
a € S¢ and o is Lipschitz, and b € C*(R?Y) (Va > 0).

Let
Lu= al-jaiju -+ bz&u

Consider

A — Lu = f. (3.2)
We need the following analytic result.

Lemma 3.1.5. Suppose a € S¢ and a,b € C®. There exists a constant \y > 0 such that
for any X\ = X\g and f € C?®, equation (3.2) admits a unique solution in C**. Moreover,

Mulla + [IV*ulla < C|flas (3.3)
where C' only depends on d, §, and ||a||, and ||b]|«-

The proof for the above lemma can be founded in Appendix B.2. Here we give the
Sketch of the proof for Lemma 3.1.5:

(i) If L=A and f € (R?), then for each A > 0, one can use Fourier transformation
to solve (3.2), i.e. u=F L[F(f) - A+ 472 - |*)] € NesoH® C C°. Moreover, (3.3)
can also be proved by Fourier analysis method (see Appendix B.2);

(ii) For any L satisfying the conditons in Lemma 3.1.5, and any u € C*®, one can prove
that (3.3) holds true for any A sufficiently large via frozen coefficient method;

(iii) Let x be a cutoff function and ¢ be a mollifier. For any f € C* we set f. = x.(f*(.).
Here x.(z) = x(z/¢) and (.(x) = e79(x/e). Using (i), for each € > 0, there is a
smooth soluiton, say u., to (3.2) with L and f replaced by A and f.. The limit of
(ue), u, satisfies A\u — Au = f, and u also satisfies (3.3);

(iv) In the light of (3.3) and the method of continuity (see lemma below), one can obtain
the solvability of (3.2) in C?%*.

Lemma 3.1.6 (Method of continuity). Let B be a Banach space, V' a normed vector space,
and Ty a norm continuous family of bounded linear operators from B into V. Assume that
there exists a positive constant C' such that for every t € [0,1] and every z € B,

lzlls < Cl[ Ty

Then Ty is a surjective if and only if T} is surjective as well.
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3.1 Strong solutions

Proof of Theorem 5.1.4. Since o and b are bounded continuous, weak solution exists to
(3.1) (see [Hua01]). Thanks to Theorem 3.1.2, we only need to prove the pathwise unique-
ness.
Let A > A\y. Here )y is the same number in Lemma 3.1.5. Consider the following
equation
Au S Lu A= b.

By Lemma 3.1.5 and interpolation theorem
1 1 1
IVulla < [ullaIV*ulld < CA72[|b]|o.

Choosing A sufficiently large so that CA~2 < 1/2. Set ¢(z) = z+u(x), then ¢ : R? — R
is a C'“*-homeomorphism.

Assume that X and X' are two solutions to (3.1). Set Y; = ¢(X;) and Y/ = ¢(X]).
Then by Ito’s formula,

dY;' = (85 + 9;u") (Xy) o (X)AWE + [a0(X) 0’ (Xy) + (6] + 9;u’) (X)) (X,)] dt

- dY; =[(I + Vu)o] 0 ¢~ (Y,)dW, + [a v2u+(J+Vu)b}o¢-1(mdt
=1 +Vu)o] o ¢~ (YV)dW; + huo ¢~ (V)dt
~~ —
=0 =:b

Similarly, dY; = &(Y/)dW, + b(Y/)dt. Since & and b are both C functions, as in the
proof for Theorem 3.1.1, we have

t
By, - Y/ <C [ BIY. - viPds
0
This yields Y; = Y/, due to Gronwall’s inequality. Since ¢ is one-to-one, X; = X|. O

3.1.4 Stochastic Flow
Consider (3.1) .

Theorem 3.1.7. If 0 and b are Lipschitz, then there exist versions of X (t,x) that are
jointly continuous in t and x a.s.

Proof.

X(t2) - X(ty) =z —y+ / (0(X(s,2)) — o(X(5,))] AW, + / B(X(s,2)) — B(X(s,9))] ds

By the Burkholder-Davis-Gundy inequalities, for any t € [0, 1],

p

E sup
s€0,t]

/0 [0(X,(2)) — o (X, ()] AW,
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<CE(/1MT sw|mgm2

<CE/ | Xs(x (s,y)|Pds.

Set g(t) = Esup,e(o | X (s,7) — X(s,y)[P. Then

t
o) <Clo =y + [ gls)ds, te 1]
0
Gronwall’s inequality yields

E sup [X(t,2) - X(t,y)l’ < Cle—yl", Wp>2.

te(0,1]

Moreover,
1\ P
BIX(to) = XG0l <C(lo—yl+1t—s}), wyeRl tse1], p>2.

This together with Lemma 1.2.3 implies that there is a version of continuous version of
(t,xz) — X(t,x) such that

HX(w)”Ca([oJ];CB(BR)) < K(w)
with o € (0,1/2) and 8 € (0,1), and K € L? for all p > 1. ~

Remark 3.1.8. The above result also holds if o and b are w-dependent and ||o||cr +
|bl|cr < L a.s., for some constant L.

The collection of processes X (¢, x) is called a flow. If o and b are smoother functions,
then X (¢,z) will be smoother in z. If in we take derivative, and use the chain rule,
formally we obtain

¢
0; X{(x) =0 +/ D0t (X (s,2))0; X! (s, 2)dW?F
0

+ /t O (X (s,7))0; X' (s, 7)ds.

To make this more precise, suppose ¢ and b are in C? and are bounded with bounded
first and second derivatives and consider the SDE

dJ(t,z) = oo (X (t,2))J (t,x)dW, + Vb(X (t,z))J (t,x)dt, Yy =1 (3.4)
Follow the proof of Theorem 3.1.7, we have

Proposition 3.1.9. Assume o,b € C¢. A pathwise solution to (3.4) erists and is unique.
The solution has moments of all orders. If J(t,x) denotes the solution, versions of J(t, )
exist that are jointly Hoélder continuous in t and x, and

E sup |J(t,x) = J(t,y) <Clz -y, z,yeR’, p=1.
tel0,1]
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3.1 Strong solutions

Exercise 3.1.1. Prove the above Lemma.
We now prove the differentiability of X (¢, x).

Theorem 3.1.10. Suppose o,b € CF. Then x — X(t,z) is C* 1 a.s., and VX (t,7) =
J(t, ).

Proof. For simplicity we take b = 0 and k£ = 2. Set

ViXi(@) o= o (Ko + egh) = K@) . he (<1.1)

and
ZMt,x) = V"X (t,2) — J(t, 2).

Noting that

t 1
VX (t,x) =6 +/ V Qo (X (5,2 + e;jh) + (1 — 1) X (s, 2))d7 | VIX' (s, 2)dW],
0 0

Vv
<[IVolleo

as we done in the proof of Theorem 3.1.7, it is not hard to prove

sup E sup |[V"X(t,7)]P <oo, p=>1. (3.5)
z€R%he(—1,1)  t€[0,1]

By Taylor expansion,
h yri hyri

— /t {/1 o (TX (5,2 +ejh) + (1 —7)X(s,2))dr [V?Xl(t, ) — V;‘Xl(t,y)} AWt

[\ /

~
<[IVolleo

+ /0 {/0 Qo (tX (5,2 +ejh) + (1 —7)X(s,2)) — 0o (7X(s,y + e;h) + (1 — 7) X (s,y))dr

/

<IIV20 oo (|X (s,2-+¢1) — X (8y-+e5h) | +1X (5:2) ~ X (5.9)])
h vl 7
ViX (s, y)dW,.

Let
g(t) = E sup |V"X(s,z) — V"X (s,y).

s€[0,¢]

Then BDG and Gronwall’s inequality yield

o(t) gc/o E [(|X(s, 2+ h) — X(s,9 + B)| + | X(5,2) — X(5,9)]) [ V"X (5[] ds

1/2

<C {E/O (IX(s,x+h) — X(s,y +h)| + |X(s,2) — X(s,9)])* ds

1/2 (35

t
{E [ 19| S eyl 22
0
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This together with Proposition 3.1.9 implies

E sup |Z'(t,2) - 26, )P < Cle — g’ p> 1 (36)
t€(0,1]
On the other hand,
Z’” t,x) / {VI[o1(X(s,2))] — Qo (X (s, 3))Ji(s, x) } AW
0
_ /0 {B64(X (5,2)) [VIX'(5,2) — Ji(s,2)] + Rl (s, 0) } AW
:/ [8;02()((5,1:))4“[(5@) + R?,f(s,x)} dW¥,
0
where
R?,;Z(s,x) = V? [GZ(X(S,I))] — (9m,i(X(s,x))V?Xl(s,x),
and

[RM(s,2)| < [h] [VEo oo V" X (5, 2) .
Again utilizing BDG inequality and Gronwall’s inequality, we see that for each p > 2,
t ) p/2
E sup |Z"(r,z)|" <CE {/ [\Zh(s,:c)IQ + (R"(s,z)) ] ds}
0

T€[0,t]

t t
gC’/ E sup |Zh(T,:v)|pds+C|h|p/ E|V"X (s, z)[*ds,
0 0

T€(0,s]
which together with (3.5) implies

E sup |Z"(t,z)]P < C|hPP, |h| < 1. (3.7)

te(0,1]
Combining (3.6) and (3.7), we obtain

E sup |Z"(t,x) — Z"(t,y)" < Cle —y|*[p|"""7, 6€[0,1], p=1|h| <1.
te[0,1]

Thanks to Lemma (1.2.3), for any a € (0, 1),

lim E sup || Z"(t,)||fa =0, p>1.
[hl=0 tef0,1]

Therefore, X (t,-) € C* a.s. and VX(t,2) = J(¢,z). O

One can also show (see Tkeda and Watanabe [[W14]) that the map x — X (¢, ) is
one-to-one and onto R
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3.2  Weak solutions

3.2 Weak solutions

In this section, we study the weak well-posedness of (3.1). The core is to study the
regularity of following resolvent equation:

A — Lu = f, (3.8)

where L = a;;0;; and a € Sg‘l and uniformly continuous.

3.2.1 Uniqueness in law

Theorem 3.2.1 (Stroock-Varadhan). Under the assumptions that o,b are bounded, o is
continuous and o(z)ot(z) > 0 for each x € R?. Then SDE (3.1) has a weak solution, and
the distribution of such solution is unique.

Our strategy is

(a) Utilizing Girsanov transformation to simplify the problem to the case without drift
term;

(b) Using generalized 1t6’s formual and LP-estimate for the resolvent equation to show
the uniqueness of law(X}).

(c¢) Proving the law of (X;);>0 is unique by induction.

Lemma 3.2.2. Let L =A andp € (1,00). For any f € L, there exists a unique solution
u € W?P solving (3.8). Moreover, u satisfies

Mully + Ve[, < CIf 1y, (3.9)

where C' only depends on d and p.

Theorem 3.2.3. Let p € (1,00). There exists a constant A\g = Ao(d, p,ws) > 0 such that
for any X\ = X\g and f € LP, equation (3.8) admits a unique solution u € WP,

Proof. Assume that u € W%P. We want to show that for sufficinetly large ), it holds that
Mlully + llullwzs < CllAu = Lul,. (3.10)

Suppose we have (3.10). Let Ty = A— A and T} = A — L, and B = W?? and V = L”.
Utilizing Lemma 3.1.6 and Lemma 3.2.2, we can see that (3.8) has a solution in W?P,

Now let us prove (3.10). Let f := Au — Lu. Assume ( € C°(B,) such that ¢ > 0,
(=11in By. Set ¢ = (((x — z)/e). Then

/\(UJCZ) — aij (z)@l](ug) = fgez — 2a,,]81u8]C§ — aijaijC§U + (CLZ'j — (lm’(Z))@ij (UCEZ)
By Lemma 3.2.2, we get

Mluczllp + IV ()l <Cwa(2) [V ()l + Cllf oo (Bau o)
+ O [ Vull (s e)) + C [[ull oo -
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Choosing ¢y > 0 sufficiently small such that Cw,(2¢) < 1/2, then

Mull oo, =) + IVl Lo (5., (2))

1 _2 (3.11)
SO fllp(Baey (z)) + Ce0™ VUl Lo(Baey (2)) + C0 Il Lo (Baey (2))-

Fact: There exist constants ¢ = ¢(d,p,e) > 0 and C = C(d,p,e) > 0, and a
sequence {z;}ien € RY such that

o> e

P, (3.12)

r< fmr<ey [ in

By (3.11) and (3.12), we obtain
Allully + [IV2ullp < ClFIR + ClIVully + Clully,

where C' only depends on d, p and w,. Using intepolation theorem, one can see that
2. 1Ip 1 2 >‘0
Allully +1IVally + V7ullp < SIV7ully + - lully + Cll £,

where \g > 1 is a constant only depends on d,p and w,. Therefore, for any A > A\ > 1,
we have
Mullp + lullwzs < C[Lf],-

]

Now let f € C>°(R?). Assume that u € W% is a solution to (3.8) for some A > Ag.
Applying Generalized It6’s formula, one can see that

d (e_AtU/<XS+t)) = e_kt [_AU(XS_A'_t) ‘I‘ LU(XS+t)] + e_AtVu(Xs+t)0'(Xs+t)dW5+t.

Taking expection conditional on Fy, we get
u(X,) = E(u(X.)|F) = / e NE (F(Xor)|F) dt, VA 1.
0

This implies that P(X,; € -|F;) is unique and P(X,; € -|F,) = P(X,4¢ € -|X,). Using
this fact, then the uniqueness in law of X; can be obtained by induction.

3.2.2 Markov properties

Define W to be the set of all continuous functions from R, to R?. Suppose that for each
starting point = the SDE (3.1) has a solution that is unique in law. Let us denote the
solution by X (x,t,w). For each x define a probability measure P, on W so that

P(X(z,t1) € Ay,--- , X(x,t,) € A,)
=P, (w(ty) € Ay, ,w(t,) € A,).
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3.2  Weak solutions

Let G? be the o-algebra generated by {ws : s < t}. We complete these o-fields by
considering all sets that are in the P, completion of G? for all x. Finally, we obtain a
right continuous filtration by letting G, := ﬂ5>ogt0+€. We then extend P, to G.

Shift operators 6; : W 3 w — w(t+-) € W.

The strong Markov property is the assertion that

Ex(Y o 97’g7'>(w) = EZT (Y)7

whenever z € R, Y € G is bounded, and 7 a finite stopping time.
To prove the strong Markov property it suffices to show

Eo(f(Zr40)|Gr) = Bz, f(Z1), (3.13)
for all x € R, f € C.(R?) and 7 a bounded stopping time.

Theorem 3.2.4. Suppose the solution to (3.1) is weakly unique for each x. Then (P, X})
15 a strong Markov process.

Proof. We have the equation

t t
zt:zﬁ/ a(zs)st+/ b(Z.) ds,
0 0

where B is a Brownian motion, not necessarily the same as the one in (3.1). Set Z] = Z,
and B, = B, — B;. Then

t t
2= 7+ / o (Z7)dB. + / b(Z) ds. (3.14)
0 0

Let Q,(w,w’) be the regular conditional distribution for E(:|F;).

Claim:

e W’ is a Brownian motion with respect to the measure Q,(w,-) for almost every
)

o Zy(W') =Zr (W), Qr(w,-)-as..

The uniqueness in law tells us that
EY f(Z)=Ey f(Z,), P,—as.
On the other hand, by definition
E f(Z)) = Y [ (Zr41) = Bu(f(Zr14)|Gr)

Thus, we get (3.13).
Our task now is to prove the claim. We need the following
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Fact: If B; is a G;-Brownian motion and 7 is a finite stopping time, then B, — B,
is a G, -Brownian motion.

Using the above fact, we have

E® exp (l Ak - (BT+tk+1 — BT—I-tk) )

3
—_

ol
—

=E, [exp (z Ak (BT+tk+1 — BT+tk) )

=1

3
—

G|

Eod

—exp (30N (tiar — 1) /2),

1

3
—

i

we get what we claimed. O]

From now on, by a slight abuse of notation, we will say (P,, X};) is a strong Markov
family when (P, Z;) is a strong Markov family.
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3.2  Weak solutions
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Chapter 4

Applications to Elliptic PDEs

Let X; be the solution to (3.1) with X, = . We will write (P,, X;) for the strong Markov
process corresponding to o and b (This can be ensured by assuming o,b € C}, or a € S,
a is continuous and b is bounded).

We have considered Poisson’s equation in Chapter 1. Let u be a C? solution to (3.2).
Then by Theorem 1.5.11,

u(zr) =E, /000 e M F(X,)dt.

We have also studied the Poisson’s equation in a nice bounded domain:

(4.1)

Me—Lu=f inD
u=>0 on 0D,

and showed that
D
u(z) = E, / e F(X,)ds,
0

if PZ‘<TD < OO) =1.

4.1 Dirichlet Problems and Harmonic functions

Let D be a ball (or other nice bounded domain) and let us consider the solution to the
Dirichlet problem: given g a continuous function on 9D, find v € C(D) such that u is C?
in D and

{Lu —0in D 1)

u=gon dD.
Theorem 4.1.1. The solution to (4.2) satisfies
u(x) = Evg (X,,).
provided that P,(tp < o) = 1.
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4.1 Dirichlet Problems and Harmonic functions

Proof. Let 7, = inf {t : dist (X;,0D) < 1/n}. By It6’s formula,
tATh
u (Xiar,) = u(Xo) + martingale —|—/ Lu (X5) ds.
0

Since Lu = 0 inside D, taking expectations shows
w(z) = Epu (Xips, ) -

We let t — oo and then n — co. By dominated convergence, we obtain u(x) = E,u (X,,).
This is what we want since u = g on 9D. m

Exercise 4.1.1. Theorem 4.1.1 implies the weak maximum principle: maxp u < maxgp u.

Exercise 4.1.2. Theorem 2.1 implies the strong mazximum principle: if u is not a constant
function, then for each x € D, u(zr) < maxgp u

Theorem 4.1.2. Let g be continuous on 0D. Suppose that P, (Tp < 0o) =1 and u(x) =
E,g(X,,) is continuous on D and C* on D. Suppose the coefficients of L are continuous.
Then Lu =0 in D.

Proof. Let B.(x) C D. By the strong Markov property, we have

u(z) =E,9(X7,) = E;9(Xo, 0 QTBT(E)) =E, {Ew |:g(X7'D © QTBT(1)>“FTBT(Z):|}

=E, [JE g(X

™D

X8, (2) )] = Bou(Xop, ))-

Noting that u € C%*(D), by Itd’s formula,

t/\TBT(z)
w(X,, ) — ulz) = /O Lu(X)ds + Mysry .

where M is a martingale. Taking expectations and letting t — oo,

]_ TBr(x)
0= —Ex/ Lu(Xs)ds.
ExTBr(a:) 0
By the continuity of Lu and letting r — 0, we get Lu(x) = 0. O

If Lu=0in D, we say u is L-harmonic in D.
One can also the following Schrodinger type operator:

Lyu = Lu+ qu.

Equation involving the above operator are considerably simpler than the quantum me-
chanics Schrodinger equation because here all terms are real-valued.
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Theorem 4.1.3. Let D be a nice bounded domain, and q € C(D) and g € C(OD). Let
u € C*(D)NC(D). that agrees with g on D and satisfies Lyu =0 in D. If

™D
E, exp (/ q+(X8)ds) < 00,
0

then

Exercise 4.1.3. Prove Theorem 4.1.5.

Exercise 4.1.4. Using (2.7) to show: there exists € > 0 such that if B C Q1,7 € Q1)2,
and |Q1 — B| < g, then

Q
Ex/ "1p(X)ds = e >0,
0
where ¢ is a constant only depends on d,d and €.

Exercise 4.1.5. In this exercise, d > 3. Let K be a compact subset of the open unit
ball of RY, and Ty := inf {t > 0: B, € K}. We assume that D := R¥N\K is connected.
We also consider a function g defined and continuous on K. The goal of the exercise
is to determine all functions v : D — R that satisfy: (P) u is bounded and continuous
on D, harmonic on D, and u(y) = g(y) if y € dD. (This is the Dirichlet problem in
D, but in contrast with Sect. 7.3 above, D is unbounded here.) We fix an increasing
sequence (Rn)@l of reals, with Ry > 1 and R, T oo as n — oco. For everyn > 1, we set
T(n) = inf {t 2 0: |Bt‘ 2 Rn}

1. Suppose that u satisfies (P). Prove that, for everyn > 1 and every x € D such that
%] < Ry,

u(r) = B, |g (Bry) 1{TK<T(n)}i| + By [u <BT(n>)) 1{T(n><TK}] '

2. Show that, by replacing the sequence (Rn)@1 with a subsequence if necessary, we may
assume that there exists a constant o € R such that, for every x € D,

lim £, |u(Br,,)| = o

n—o0

and that we then have

lim u(x) = a.
|z|—o00

3. Show that, for every x € D,

u(r) = E, [g (Bry.) l{TK<OO}} + aP, (Tk = ).

4. Assume that D satisfies the exterior cone condition at everyy € 0D (this is defined in
the same way as when D is bounded). Show that, for any choice of a € R, the formula of
question 3. gives a solution of the problem (P).
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4.2 Once again on the hitting probability

4.2 Once again on the hitting probability

Recall that ,
1
Ty = / o, dW,, a=-o0' € Sg.
0 2

In this section, we want to prove following important hitting probability estimate,
which is a refined version of Proposition 2.2.9. This was first found by Krylov-Safonov
[KS79].

Recall that

or(z)=mf{t>0:24+x, €'} and 7o =inf{t>0:2+x; ¢ Q}.

Theorem 4.2.1. There is a increasing function p : (0,1) — (0,1), which only depends
on d and 6, such that for any I' C Q1 and v € Qy2,

P(or(z) < 7q,(x)) = p(|T']). (4.3)

Before prove Theorem 4.2.1, we need some preparation.

One tool is a corollary of the Calderon-Zygmund cube decomposition. Let ()1 be the
unit cube. We split it into 2" cubes of half side. We do the same splitting with each one
of these 2" cubes and we iterate this process. The cubes obtained in this way are called
dyadic cubes. B

If @ is a dyadic cube different from @, we say that @) is the predecessor of @ if @ is
one of the 2™ cubes obtained from dividing Q).

We also let (k) denote the cube with the same center as () but side length  times
as long.

Lemma 4.2.2 (Krylov-Safonov [KS79]). Let v € (0,1). IfT" C @y and |I'| < v, then
there exists a sequaence of dyakic cubes, say {Q"}icr such that

1. the interiors of the Q° are pairwise disjoint;
2. TN Q| > ~|Q'| and [T N QY| < ~|QY|, for each i € I;
3. |T| < ~|E| and |T\E| = 0, where E = U;ezQ'.
Proof. We use the Calderén-Zygmund decomposition. We have that

nr
leflév-

Q1

We subdivide @7 into 2" dyadic cubes. If () is one of these 2" subcubes of (); and
satisfies |@ NT|/|Q| < v, we then split @ into 2" dyadic cubes. We iterate this process.
In this way, we pick a family Q' - Q?.. . of dyadic cubes (different from ;) such that

Q' NI
|Q°]

>y, Yiel
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If 2 ¢ U;jer@' then z belongs to an infinite number of closed dyadic cubes @ with diameters
tending to zero, such that |Q NT'|/|Q| < v < 1. Applying the Lebesgue differentiation
theorem to 14, we get that 14(x) < v < 1for a.e. x ¢ U;ez@Q’. Hence A C U;ez@’, except
for a set of measure zero. B

Consider the family of predecessors of the cubes @, and relabel them so that {Q'}
are pairwise disjoint. We clearly have that

i€l

r g UieIQi g UzEfQZ = E,
except for a set of measure zero. From the way we chose the cubes @,

‘@imr‘ _
@

We conclude that

<Y |@nr <y Y@ =2 | U] <l
i€l i€l
that finishes the proof of Lemma 4.2.2. O

The second tool is support theorem, which implies

Lemma 4.2.3. Let k € (3/4,1). Suppose that Q is the predecessor of Q, then for each
z € Q(k),
P (aQ(%)(:p) < T@(x)) > (k) > 0,

where p'(k) only depends on d,d and k.

Proof of Theorem 4.2.1. Define

p(y) =inf {P (or(2) < 7q,(2)) 1 a € S5, 2 € Qu/2, T C @1, [T > 7}

By Proposition 2.2.9, we know that there exists a constant b € (0, 1) such that p(b) > 0.

We want to prove that for each v € (0, 8],

140
p(y) > 0 implies p(67) > 0, where 0 = % <1

Assume that p(y) > 0 for some v € (0,b], and I' C @, with |I'| > 6v. Let @Q; and
E = U;czQ" be the sets in Lemma 4.2.2. Then

1+5b
B> 0|20 = ——.
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4.2 Once again on the hitting probability

Therefore, we can find a finite subset of Z, say Zy, and s € (3/4,1) such that

A=) Q'(r) with [A] > b.

i€Zg
Since |A| > b|@1|, by Proposition 2.2.9,
P (oa(z) < 719,(x)) =2 p(b) >0, Vae Q. (4.4)

Suppose that y € OA = U;ez, dQ(k), then y € dQ (k) for some i € Zy. In this case,

P (0qia2(y) <70,(y) =P <0Qi(1/2) () <75 (y)) > (k) >0,

due to Lemma 4.2.3. Set

B=]JQ'(1/2).

i€Zp
Then

P(o5(y) <7(y) > if P <0Qf(1/2>(y) < T@(M)

>p'(k) >0, Vye€oA.

The conditional version of above estimate we need below is
P (o} < 7| Foate)) > /() > 0. (4.5
where
op =inf{t > o4(x) : 2+ 2, € B} and 75 :=inf{t > o4(x): 2+, ¢ Q1}.

Suppose that z € OB, then z € 0Q'(1/2) for some i € Zy. Since |T' N Q;| > v|Qs|, by
our assumption

P (ornqi(2) < 170,(y)) = P(orngi(2) < 79i(2)) = p(v) >0, Vz € dB.

€1y

Set

Then
P(or(2) < 7g,(2)) 2 P (ornp(2) < 7¢,(2))
> iIlIf P(orngi(2) < 1gi(2)) 2 p(y) >0, Vze dB.
1€XLo
The conditional version of above estimate we need below is
P (of < 70, |Fo,) = p(7) > 0. (4.6)
where

op =inf{t >op x4z, €T} and 75 =inf{t > oz + 1z, ¢ Q1}
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Q'Nr|>7|Q

Lorap(z)

A=T]@ ), =[] (;) D=]]¢

iely iely

Figure 4.1: Hitting Prob.

Therefore, for each x € Q1/9,

P (or(z) < mq,(2))

>P (0a(x) < 70,(2); 07 < 70, | Forat))

- |:10'A($)<7'Q1 (JC)P (Jf < Tél ‘fo'A(ac))]

= |:10A(x)<TQ1 (:C)P (OJB < TC,>21; 0‘{4 < Tél “FUA(I))]

—E {1 ,(0)<r, 1B | Lopert, P (0F < 76,1 Fy) | Fosio] }
(4.6) ) .

= p(7)E [1aA<w)<rQ1<x>P (o < g, |]:0A(w>)]
(4.5) ,

> p(7)p' (k)P (0a(r) < mq,(7))

Since the above estimate holds for any I' C @y with |I'| > 6, we get p(6) > 0, provided
that p(y) > 0. Noting that 6 < 1, we obtain that p(y) > 0 for all v € (0, 1). O
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4.3 Harnack Inequality and Holder estimate

4.3 Harnack Inequality and Holder estimate

In this section, we prove some theorems of Krylov and Safonov [[KS81] concerning (posi-
tive) L-harmonic functions. Let § € (0,1). Set

P(0) = {{]P)x}xeRn : (Py, X) is the strong Markov process
associate with some a(-) € Sg}.

Let
[U]a:p 1= sup M

and Oscu :=supu(z) — inf u(x).
i S )s (z) (z)

xeD zeD

Theorem 4.3.1 (Holder estimate). Suppose u is bounded in Q1 and Lu = 0 in Q1. Then
there exist a and C' only depending on d and 6 such that

[tas)p < Cllullz=@): (4.7)

Proof. Claim: there exists a constant p € (0,1) such that for any z € Q12, 7 < 1/2,

Osc u < pOsc wu. 4.8
Qr/2(2) pQr(Z) (48)

Assume the claim is true. Suppose that =,y € @1/, and |z —y| < 1, let k € N such
that 27571 < |z —y| < 27%.

u(z) —uly)| < Osc u<p Ose u< < Cptlulliman
Qy—k(x) Qy—rt1(z)
<Cp~ 8|y poo () < Cla — y| %2 |Jul| L~ ()

Therefore, the above claim implies (4.7) with « = log, p~*.

To prove (4.8). Without loss of generality, we can assume inf,cqg ;yu = 0 and
SUD,eq, (- @ = 1. In this case, Oscq,;) u = 1. Let B := {z € Qyp2 : u(z) > 1/2},
we may assume |B| > %]QT/Q\, if not, we replace u by 1 —u. For any « € Q, 2, by Itd’s
formula, Theorem 4.2.1 and scaling,

1
u(z) = EmU(XTQT/\aB) > P, (o <T19,) > §p(2*d*1).

N | =

Hence we get

1
Osc u<1—=p(27% 1 = p=pOscu.
e B ( J=p=» @r(2)

[]

Theorem 4.3.2 (Harnack inequality). Suppose a € S¢ and L = a;;0;;. There exists C
depending only on O such that if u is nonnegative, bounded in @4, and u(Xt/\TQ4) s a
martingale, then u(x) < Cu(y) if z,y € Q1.
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Proof. 1f we look at u + 0 and let 6 — 0, we may assume u > 0. By looking at C'u, we
may assume infg, ,» u=1. By Theorem , we know that u is Holder continuous in 1, so
there exists

y € Q2 such that u(y) = 1.

We want to show that u is bounded above by a constant in ()1, where the constant depends
only on 4.
By the support theorem and scaling, if z € ()12, there exists ¢ such that

Py <0Q1/2(x) < TQ2> > 0.

By scaling, if z € Q1/2(x), then P, <0Q1/4(x) < TQQ) > 0. So by the strong Markov
property,
P, (JQ1/4($) < 7—Q2> > 6.

Repeating and using induction,

Py <0Q2_k(x) < TQz) > 5"

Then
1=u(y) 2 E, [u (XUQQ%@)) $0Q, k(2) < TQQ]
> oF ( inf u) ,
Qy—k(2)
or
inf u<d" Vk>1. (4.9)
Qy—k(2)

By the proof of Theorem 4.3.1, there exists p < 1 such that

Osc <p Osc u.
Qz—k—1(9€) Qy—k(z)
Take N large so that p= > 1/ (6 — §?). Then
1
Osc u}pNOscu 2Oscu
Qon—k(2) Qy—k(z 0 —02Q, 1 (x)

Take K large so that v/d2¥~% < 1/8. Suppose there exists 2o € Q1 (y) such that u () >
oK=L

We will construct a sequence zy, Ts, . .. by induction such that u(z;) > §—%-7-1,

Suppose we have ; € Qonv+1-x—; (zj_1) withu (x;) = 657771 j < n. Since |z; — x;_1] <
VA2NTI-E=I 1 < j < n, and |2 —y| < 1, then |z, —y| < 2. Since u (z,) > 6~ K1
and by (4.9), infq__ . (@)u <",

Osc u>o K™ ((5’1 — 1) )
Qy—K-—n(Tn)
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4.3 Harnack Inequality and Holder estimate

S0 OSCQ,x_ e () U = 6~ K72 which implies that there exists 2,41 € Qov—x—x(z,) With
U (241) = 6 K772 because u is nonnegative. By induction we obtain a sequence z,, with
x, € Q3(y) and u (z,,) — oo. This contradicts the boundedness of u on Q4. Therefore u
is bounded on @; by 6~ %~1. O
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Chapter 5

Malliavin’s proof of Hormander’s
Theorem

Let Vo, Vi,...,V, : R? — R? be vector fields satisfying C*°-boundedness conditions.

Consider
dX;(z) =3", Vi(Xy) o dW! + Vo(X,)dt = V(X;) o AWy + Vo(Xy)de, (5.1)
Xo(l') = . ’

The Malliavin calculus is a method originally developed for proving smoothness of
pi(z,y) in the variable y, where p,(z,y) is the transition density of a process associated
to an operator with smooth coefficients. The basic idea involves an integration by parts
formula in an infinite-dimensional space.

There are two main approaches, one using the Girsanov transformation and the other
using the Ornstein-Uhlenbeck operator. We follow the Girsanov approach pioneered by
Bismut [Bis81] to obtain the integration by parts formula.

5.1 Integration by parts

Let d > 1, and £ be a d-dimensional standard Gaussian random variable. Then
1 1 =2
Po¢  (dz) = p(dz) = —e 2 dx.
(2m)?

Suppose ¢ € C*(R?) and h € R?, integration by parts formula yields that

EViple) = | Viplale "+ da
e (5.2)

:(271)% /Rd p(z)(z, hye” = dz = E[p(&)(&,h)].

One can also verify that
E[0%¢(¢)] = Elp(§) Pa(8)],

where o € N? and P, is a polynomial.
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5.1 Integration by parts

Remark 5.1.1. (i) Charles Stein also showed that if (5.2) holds for all bounded, con-
tinuous and piecewise continuously differentiable functions ¢ with E|¢'(§)] < oo,
then & has a standard normal distribution.

(ii) If h is a smooth vector field on R?. Then,
B(Ve(©).h) = [ (T hd == [ i (divh = (b)) du
—_———
divyh (53)
=E{p(O[(h, &) — divh(]}.
The operator L := —div,V = A —x - V is called the Ornstein-Uhlenbeck operator.
The following lemma is a criterion for smooth densities
Lemma 5.1.2. Suppose & : Q — R Suppose for each k there exists C), such that
[EVF0 ()| < Crllellos

whenever ¢ € C*. Then there exists p smooth such that

P(c e A) = / ple)dz

for all Borel sets A.

Proof. Let = Po¢™ ' € Z(RY) C Z'(RY), and pe(z) = [pa 0-(x — y)u(dy). By our
assumption, for any o = (ay, - - ag) € N® with a; + - &d =k,

(=), 0%y =(0%p, pe) = (0% * 02, 1)
/ 0% * 0-(x)p(dz)
<Cillplloos, Vo€ CF, keN.

This implies that sup, ||V*u.|l1 < Ck. In the light of Sobolev embedding, one can see that
sup, || V¥c||oo < Cf. Therefore, u. — p € C§°. O

The main tool in the proof is the Malliavin calculus with its integration by part formula
in Wiener space (infinite-dimension space), which was developed precisely in order to
provide a probabilistic proof of Hormander’s Theorem. It essentially relies on the fact
that the image of a Gaussian measure under a “smooth” submersion that is sufficiently
integrable possesses a smooth density with respect to Lebesgue measure.

Below we set Q@ = C([0,1];R™) and (2, F, F:,P) be the Wiener space. Then the

canonical process w; is a n-dimensional Brownian motion under P.

Lemma 5.1.3. Suppose F,G € CL(Q) (both F and G are bounded and have bounded
Fréchet derivative). Suppose hg is adapted and bounded and let H; = fo hsds. Then

E(DyFG)=E [F (—DHG +G /0 1 thwt)] : (5.4)

The left-hand side represents the expectation of the Fréchet derivative at w. in the direction
H.(w).
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Proof. We first prove the case that G = 1. Let

t
Xf:wt+6/ hst
0

t c2 ot
M; = exp (—5/ hsdws — —/ |hg|? ds) .
0 2 Jo

Let P. be defined by dP./dP = M} on F;. By Girsanov’s theorem, under P, the

process
t

W — <w, —5/hsdws> =w; + 5/ hsds = X7
0 t 0

is a martingale with the same quadratic variation as w;, namely ¢t. By Theorem 1.5.5,
under P, the process X; is a Brownian motion. Therefore

Let

E.F (X°) = EF.
On the other hand,

E.F (X°)

. 1 2 pl
=E {F (w + 5/ hsds) exp (—6/ hedw, + 8—/ |h5|2d3)} .
0 0 2 Jo

By, the right-hand side of is independent of . We differentiate with respect to ¢
and set ¢ = 0. The assumptions on A and F' allow us to interchange the operations
of differentiation and expectation by use of the dominated convergence theorem and we
obtain

E {F /0 1 Hsdws] = E[DyF].

Now replacing F' in the above identity with F'G, and using chain rule for Dy, we obtain
our assertion. [

Let
W20, 1;RY) = {H e O([0,1;R") : H(0) = 0, € L*(]0, 1];R”)}

and )
(H,H')yy.2 ::/ H(s)- H'(s)ds.
0

Suppose that F' and H satisfy the same conditions in Lemma 5.1.3. Then by (5.4),
1 . .
EDyF)=E {F/ H(t)dwt} = E[F(H -w)], (5.5)
0

where (H - w) is the It6 integral fol H,dw;.
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5.1 Integration by parts

Compare (5.3) with (5.5). The adapted process H can be regard as “divergence-free”
vector field on Wiener space. In this case,

(h,z) ~~ (H cw)“="(H, w>W61,2 and “divH” = 0.
Note that
(Wo s 1 lw) == (L2([0, 1 R™); [ - flo) =2 (Ko | - |0).
Let {hy}ren be a normal orthogonal basis of #, and W, ? 3 Hy(t) = fg hi(s)ds. Set
DyF =Dy, F, F e CHQ).

Since Y, (DxF')? is bounded (since F' € C}(Q)), we can define

DF =" DyFhy € L*(QH), and [DFly = |3 (DiF)2.
k k

Next we going to identify “divH”, when H is not adapted. Suppose that

up € CL(Q) and u = Zukhk,
k
where the summation contains only finite non-zero terms. Then by (5.4),
E (DF,u), :E<DF, Ek: ukhk>H _ E(Xk: Dk.Fuk)
—E (F 3 wn(h - w)) —E <F 3y Dkuk)
k k

—diijizzé(u)
k k
———
“="(u,w)y “="divu

The operator ¢ is called the divergence operator (cf. [Nua06]). In particular, for any
h € H and F,G € C} (), we have

E[(DF,h)G] = E[FG(h-w)] — E[F(DG, h)]. (5.6)

The main examples of F' we will consider later is ¢(X;), where ¢ is smooth and
X; solves an SDE. However, the Ito6 map F : w. — X.(w) is even not continuous from
C([0,1];R™) to C([0, 1];RY). So we need some extension. In fact, as a consequence of the
integration by parts formula, we can show that the operator D is closable from L?((), P;R)
to L?(2, P; H), which guarantees that it is “well-behaved” from a functional-analytic point
of view.
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Proposition 5.1.4. The operator D is closable. In other words if, for some sequence F,,,
one has F, — 0 in L*(Q,P;R) and DF,, — u in L*(Q,P;H), then u = 0.

Exercise 5.1.1. Prove the above poposition. (Hint: show that C}(2) is dense in L*(Q, P).)

We henceforth denote by #1? the domain of the closure of D and we do not dis-
tinguish between D and its closure. One can of course apply the Malliavin differentia-
tion operator repeatedly, thus yielding an unbounded closed operator D* from L?(Q,P)
to L2(Q, P; H®") We denote the domain of this operator by #*2.  Actually, a similar
proof shows that powers of D are closable as unbounded operators from LP({),P) to
LP (Q, P H ®’“) for every p > 1. We denote the domain of these operators by #*?. Fur-
thermore, for any Hilbert space K, we denote by #%?(K) the domain of D* viewed as an
operator from LP(Q,P;K) to L? (Q, P: H®* ® IC). We call a random variable belonging
to #'5P for every k,p > 1. We call a random variable belonging to #*® for every k,p > 1
”Malliavin smooth” and we write .7 = (), , #* as well as ./ (K) = (N, , #**(K). The
Malliavin smooth random variables play a role analogous to that of Schwartz test functions
in finite-dimensional analysis.

As mentioned above the main examples of . functionals will be considered is p(X}).

Proposition 5.1.5. Let X; be the d-dimensional process that is a solution to (5.1). As-
sume that o and b are C;°. Then X; € ..

Lemma 5.1.6.
Eloul* = Elul* + )~ B(Duy, Duy)y
k
Proof. Suppose u = Y1 ughy, with u, € C2(€). Recall that
ou = ug(hy - w) — Dyug.

Then

and
Dk/5u = Dk/ (uk(hk : w) — Dkuk) = Dk/uk(hk : w) + upr — Dk/Dkuk

Therefore, Déu — 6 Du = u.
E|duf* = E{u, Dou) = Elul3, + E{u, 6 Du)y = Elul3, + E|Dulfigy = |52
O

Proposition 5.1.7. For every p > 1 there exist constants K and C' such that, for every
separable Hilbert space IC and every u € (H ® K), one has the bound

E|oul’ < C Z (E’Dku‘2p)l/2

0<k<K
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5.1 Integration by parts

Proof. By the above Lemma, we only prove the case that p > 2. Using the definition of
combined with the chain rule for D, Proposition 3.8 ; and Young’s inequality, we obtain

the bound

E|oul’ = (p — 1)E (|6u[*"*(u, Déu)) = (p — 1)E[0ul"~? (Jul|* + (u, Ddu)y)

1
< §E|5u|p + CE (|ul]? + |u|p/2|D5u|p/2) ,
for some constant C'. We now use Holder’s inequality which yields

E ([ul26Dul??) < (Elu)"* (B|Dou/*)*" |

Combining this with the above, we conclude that there exists a constant C' such that

Elsul” < C (B |Du|®)"” + (E|sDuf?/*)*?.
The proof is concluded by a simple inductive argument.

Suppose that F' € S. Define

LF =§(DF) =Y (DkaF — DyF / 1 hk(t)dwt)
k 0

Then L is the operator corresponding to the Ornstein-Uhlenbeck operator A — x - V

in finite dimensional case, and

Exercise 5.1.2. Prove that
E[(LF)G] = E[F(LG)].

Noting that
L(FG) = (LF)G + F(LG) + 2DF DG,

we have

E[(LF)G] = E[F(LG)] = —E[D,FD,G).

Theorem 5.1.8. Letp > 1, F € #'P and . Assume that hy is adapted, H; =

and |H|y is bounded. Then
(i) DyF, convergets to (DF,H) =: Dy F in L? and

1
E[DyF]=E {F / hsdws} :
0
(i1) it holds that
o(F) € W' and Dyo(F)=Vp(F)DF, VYy¢€ Cy.

(iii) if F,G € WP with p > 2
E[(LF)G] = E[F(LG)] = —E[D,FD,G)].
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Proof. We apply Lemma 5.1.3 discussed above to F}, and let n — oo. The convergence of
E [Dy F,,(W)] can be seen by

|DyF, — DyF,,| = (H,DF,, — DF,,)3y < |H|u|D(F,, — Fn)|% — 0in LP, p > 1.

Since
1 P’ 1 p'/2 /
E (/ hsdws) < CE (/ \hsﬁds> < CE|HJ, < 00, 1 <p < o0,
0 0

the convergence of E [Fn fol hsdws} follows from the LP convergence of F}, to F'in LP with
p > 1 and the Holder inequality. The second assertion can be obtained by similar way. [

5.2 Malliavin Matrix

Now assume that F' = (F,--- Fy), each F; is real-valued and F; € Ny =1 # %P, and that
0 € C(RY). Let B ' '
vE = (DF*, DF’)y,.

Then A
D((F)) = 0,0(F)DF’

and
(D(@(F)), DF7), = dp(F)n.
This yields that )
949(F) = {D(p(F)). D), (') 59

provided that vg is invertible.
Exercise 5.2.1. Assume F € Ny =1 #*P and vp' € Nys1LP. Then
Vet € Mgt WM and Dyt = =y (Dye)ve'
Theorem 5.2.1. Suppose that F € Ny o1 W*P and vz € Nys1LP. Then
[EVo(F)| < Cllelle.
Proof. Thanks to (5.8) and Theorem 5.1.8,

EV'o(F) = E [(D(¢(F)), 7' DF)3]
=E [¢(F)d(y' DF)]

This yields that

BV o(F)| <ll¢ll<E[6(vz' DF)] < O, | Fllywa, 175 )10l 2> 1.
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5.2  Malliavin Matrix

We need to calculate Dy X;, where X; solves (5.1). By definition,

Xi(w) =a+ /OtV(XS) o dws + /OtVO(XS)ds

and

X,(w + eHy) =z + /t V (Xa(w + 2Hy)) o d (ws + eHy(s)) + /t Vo(X.(w + eHy))ds

= + /t V (Xs(w+eHy)) o dws + €/t V (Xi(w + eHy)) hi(s)ds
+ /tVo(Xs(w +eHy))ds

Taking the difference, dividing by ¢, and letting ¢ — 0, we obtain that
t ) t ) t
DX, = / O;Vi(X) Dp X7 o duwl +/ 0;Vo(Xs)DpX]ds + / Vi(X,)hk(s)ds.
0 0 0
Recall that J(t) = VX, then
dJi(t) = a Vi (Xy) Ji(t) o dwy + OVG (X,) JL(t)de,  J(0) = I.
Let Z(t) : Q — R4 be the solution to
dZi(t) = —Z{(); Vi (Xy) o dwf — Z[(t)Vy (Xy)dt,  Z(0) =1,
By 1to’s formula, one can verify that
d(Z(t)J(t)) = Z(t) odJ(t) +dZ(t) o J(t) = 0,
which yields that Z(t) = J~1(¢).

Proposition 5.2.2.
t
DX, = J(1) / T (s)V (X, )hi(s)ds
0

Consequently,
5, = (DX DXE) = J() [ I VYT ) s 0
Proof. By Ito’s formula and (5.10),
o [ evme)
—dJ() /0 VX h(3)ds + V(X (0)d
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Cvv(x,) [ / T L)V (X )hi(s )ds] o dw;

+ V(X)) { / T HS)V (X, hu(s )ds] dt + V(X)) hy(t)dt
Therefore, t — J(t) fot J7H(s)V(X,)hi(s)ds satisfies the same equation as Dy X;, which
yields (5.12). O
Set

Clt) = /0 T (s)V (X )V (X)L (s)] ds.

5.3 Hormander’s Theorem
Let U(x) =Y i, U(x)d; = U'(2)0;, V(z) = V*(x)d;. Define the Lie Bracket [U, V] as:
(U, V](x) := U'(2)0;(V?(2))0; — V'0;(U? (2))0; = [U'd;V? — V'0,U7|(2)0;
Define
SO = {‘/:L 11> O}7Sk+l = Sku{[Uv‘/}] U € Ska] 2 0}7
and
V% =span{V : V € Si}.
We say that the vector fields Vj, Vi - - - |V, satisfy the parabolic Hormander condition
U7 @) =R? veeR’ (H)

k>0
Why we consider this kind of condition?

Theorem 5.3.1 (Stroock-Varadhan’s support theorem). The law of the solution to (5.1)
on path space is supported by the closure of those smooth curves that, at every point (t,x),
are tangent to the hyperplane spanned by {Vo(x,t), -+, Vn(x,t)}, where we set

Vol 1) = (VOP), V() = (Véx)) j=1,2.0N.

For a smooth manifold M, recall that £ C T'M is a smooth subbundle of dimension
dif E, C T, M is a vector space of dimension d at every x € M and if the dependency
x — F, is smooth. (Locally, E, is the linear span of finitely many smooth vector fields
on M.) A subbundle is called integrable if, whenever U,V are vector fields on M taking
values in E, their Lie bracket [U, V] also takes values in E. With these definitions at
hand, recall the well-known Frobenius integrability theorem from differential geometry:

Theorem 5.3.2. Let M be a smooth n—dimensional manifold and let E C T M be a
smooth vector bundle of dimension d < n. Then E is integrable if and only if there
(locally) exists a smooth foliation of M into leaves of dimension d such that, for every
x € M, the tangent space of the leaf passing through x is given by E,.
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5.3 Hormander’s Theorem

In view of this result, Hormander’s condition is not surprising. Indeed, if we define
E(x,t) = Uyso ¥ (2,t), then this gives us a subbundle of R¥*! which is integrable. Note
that the dimension of E(z,t) could in principle depend on (¢, x), but since the dimension
is a lower semicontinuous function, it will take its maximal value on an open set. If, on
some open set, this maximal value is less than n + 1, then support theorem tells us that,
there exists a submanifold (with boundary) M~ C M of dimension strictly less than n
such that T, M~ = E, ) for every (y,s) C M~ . In particular, all the curves appearing
in the Stroock-Varadhan support theorem and supporting the law of the solution to (1.1)
must lie in M~ until they reach its boundary. As a consequence, since M~ is always
transverse to the sections with constant ¢, the solutions at time ¢ will, with positive
probability, lie in a submanifold of M of strictly positive codimension. This immediately
implies that the transition probabilities cannot be continuous with respect to Lebesgue
measure.

Theorem 5.3.3. Consider (5.1) and assume that all vector fields have bounded derivatives
of all orders. If it satisfies(H), then its solutions admit a smooth density with respect to
Lebesque measure and the corresponding Markov semigroup maps bounded functions into
smooth functions.

We only need to prove det C; € L.
We need the following useful lemma.

Lemma 5.3.4. Let M be a random, symmetric, positive semidefinite matriz with entries
in L>~. Assume that for p sufficient large, there exists a constant C, and an €, > 0 such
that for 0 < e < e, we have

Then (det M)~! € L>~,

Proof. ¥t > 1, Choose {&1,---,&n} C S, such that supjg_; mingen, £ — &| < 72 and
m < Ct2V.
vé € SV, we can find a vector &, such that,

§TME = 6 M + M (€ — &) + (€ — &) ME > & Mg — 2| M|t
So we get i
{inf €"ME <7} kL:Jl{sZ M <3t} {|M]| >t}
Now,
P(|[M > 1) =P(‘glzf15TM£ <t™)

<P(Up (e Mg < 307}) + (M > 1)
<CCon 02N+ E(| M)
<Opt
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E(det M 1)1 <E|M |7 < 0/ tIP(| M| > t)de
0

</ LAt Ot dt < oo
0

Fixed ¢ € SV, define Zy;(t) = ¢7J;7'U(X,). Using Ito’s formula,

dZu(t) = — "I VY (XU (Xy)dt — €77V (X)U (X)) 0 AW
+ ETTTHX)U (X)) Vo(Xa)dt + €7 T Y (XU (X )V (Xe) 0 AW/
=TT Vo, UN(Xo)dt + €771 [V, UN(Xe) 0 AW/ (5.14)
:Z[VO7U}(t) + Zv; 01 (Xy) o dWY

1
:[Z[VO:U]( )+ = Z, vy op | At + Zyy, o (Xe) - WY

2

Before going to prove the main theorem, we need some technical lemmas.

Lemma 5.3.5. Suppose f € C'(]0,1]), then

_1
1fller < CUANET - 1155

Lemma 5.3.6. Suppose Y; = f(f 0,dBy, E|jo|, < K, < oo, then Voo € (0,3), p > 1,
E|Y[¢. < C(K, a,p).

Proof. Choose 3, p such that

1 1
a+—-<f< =,
P 2

by Lemma 1.2.3,
Y, = Y|P E|Y; - Y,]?
p | t t
E[Y]|%, < CE (/ / 5 — ]+ ———ds dt) / / \s—t]“rﬁpd sdt.
Thanks to BDG inequality,
t p/2
BIY, - Yip < CB( [ o lar) " < Gyls = e

Combining the above inequalities,

11
E|Y]}a < C/ / |s — t|71PPP2dsdt < oo
o Jo
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5.3 Hormander’s Theorem

Suppose U is a smooth vector field with bounded derivatives of all orders. By the
above lemma, it’s easy to see

1Zullce € L7

Definition 5.3.7. Let {A}.c01), {B}ec(o,1) be two family of random events.
A. —. B, means Vp >> 1, there exists a constant C,, such that,

P(A.\ B.) < Cye?.

Lemma 5.3.8 (Quantitative version of Doob-Meyer’s decomposition). Let W be a d— dimensional

Wiener process, a and b be R respectively R?— valued adapted processes such that, for
a < 1/2, we have ||a]|a, |b]|la € L. Moreover, let Z be defined by

t t
Zy = Zo—i—/ a(s)ds—i—/ b;(s)dW?.
0 0
Then there ezists a constant r € (0,1) such that
Zlle <€} == {llallo <"} N {l[bllo <"}

Proof.
t t )
72 =73 —i—/ (2a5Zs + |b(s)]*)ds —|—/ 20(s)ZsdW?. (5.15)
0 0

lalla € L7 = {|lalj < eV/*} —. @. Hence, {||Z]| < €} —: {| [ 205 Z,ds]|o < ¥4}
Similarly {||Z]|e < €} —¢ {|| fol 1b;(5)Zs|*ds||e < €%/2}. Using exponential martingale

inequality,
1 : .
{H/ |bj(s)ZS|2dsH <g3/2} . {H/ 2, (s)dIW?
0 S 0

From (5.15), we get

11Z] < &} - {/ b(s) Pdsee < 52/3} = {/ b(s)lds < 51/3}.

< 52/3}.
o0

Combining the above relation, (5.3.5) and {||b]|l;/3 < e7V/*} —. @, we get
{I1Z]ls0 < €} = {lIblloo < '}
Using the same argument, we can prove

{I1Z]le < €} =< {llalloe < %Y.
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Proof of Theorem. Notice

d t
oE=Y / | Zy, (3) s, (5.16)
j=170

Using Lemma 5.3.5, we get

{7 < e} = {1 Zn, ]l < &7

By Lemma 5.3.8,
{f'ce <t = ) I1Zv]e <™}

Vet
for suitable g, > 0. Now observe that Zy(0) = (z,U(zo)). By Hérmander’s condition,
V¥ (20) = RN for k large enough. However, if #* (zy) = RN, we can pick V € ¥ (x)
such that |Zy(0)| = [{(z,V(z0))| = €0, so that the right-hand-side in the above equation
is the empty set. We have thus proved {¢7Cy¢ < e} —. &. Now, using Lemma 5.3.4, we
complete the proof. n
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5.3 Hormander’s Theorem
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Appendix A

Useful facts

Lemma A.0.1 (Area formula). Consider a locally Lipschitz function f : R? — R? and a
Borel set A CRY. Then the function y — Na(y) := card{f1(y) N A}} is measurable and

/A [det(Vf@)dz = [ Na(y)dy > 29(F(A)).

R

Consequently, for any g > 0,

A

/ g(y)dy < / o(f ()] det ¥ f (2)| . (A1)
f(A)

A.1 Sobolev spaces

Let W"P denote the Sobolev space consisting of all real-valued functions on R? whose
weak derivatives up to order k are functions in LP. Here k is a non-negative integer and
1 < p < 00. The first part of the Sobolev embedding theorem states that

Theorem A.1.1 (Sobolev). Ifk > 1, and 1 < p < q < oo are two real numbers such that

kE—1

Y

1
q

D=

then
Whe s Wha,

The second part of the Sobolev embedding theorem applies to embeddings in Holder
spaces C™?,

Theorem A.1.2 (Morrey). If d < pk and

d
r+a==~kFk— -
p

with « € (0,1), then one has the embedding

Wk < e,
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A.3 Interpolation Theorems

A.2 Singular integral

Singular integrals are central to harmonic analysis and are intimately connected with the
study of partial differential equations. Singular integral is an integral operator

T(f)(x) = / K(x.9)f(y) dy,

whose kernel function K : R? x R? — R is singular along the diagonal x = y.

Typical examples of integral operators are the Riesz transforms, which are a fam-
ily of generalizations of the Hilbert transform to Euclidean spaces of dimension d > 2.
Specifically, the Riesz transforms of a complex-valued function f are defined by

. (zi —yi) f(y) ;
Rif(x) = cglim ——dy, i=1,---d.
(@) 10 RAB.(x) |7 — Y]}

1 _ D((d+1)/2) The

Twg—1 nld+1)/2
limit is written in various ways, often as a principal value, or as a convolution with the
tempered distribution

The constant ¢y is a dimensional normalization given by ¢; =

S p.v. [

The Riesz transforms are given by a Fourier multiplier. Indeed, the Fourier transform
of R;f is given by
i

F(Rif)(E) = —Z@(}"f)(ﬁ)

A particular consequence of this last observation is that the Riesz transform defines a
bounded linear operator in L?.

Theorem A.2.1. For each i € {1,---,d}, R; is bounded on LP with p € (1,00) and
satisfy weak-type (1,1) estimates:

{z € RY: |Rif(x)] > A} < Cyll fll1 /A (A.2)

A.3 Interpolation Theorems

The following simple Interpolation theorem is useful.

Lemma A.3.1. 1. Letp € [1,00). There ezits constant C' such that

1 1
IVull, < CIVulljlull?- (A.3)

Let a € (0,). There exits constant C' such that

(Vulo < CIV2ul2[u]?. (A.4)
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Appendix B

Some basic results of PDEs

B.1 Monge-Ampere Equation

To motivate the definition of weak solutions to (2.6), given an open set D C R", consider
u: D — R a convex function of class C? satisfying (2.6) for some f : D — RT. Then
given any Borel set £ C D, it follows by the area formula that

/fdx:/detDQuda::|Vu(E)|.
E E

Notice that while the above argument needs u to be of class C?, the identity

/E [ = [Vu(E)

makes sense if u is only of class C*. To find a definition when u is merely convex one
could try to replace the gradient Vu(z) with the subdifferential du(z) and ask for the
above equality to hold for any Borel set E. Here Ju(x) is given by

u(z) == {p e R* 1 u(y) > u(z) + (p,y —z) Vye D}.
This motivates the following definition:

Definition B.1.1. Given an open set D C R"™ and a convex function v : D — R, we
define the Monge-Ampére measure associated to u by

U Ju(x)

zelR

pu(E) =

The basic idea of Alexandrov was to say that u is a weak solution of (2.6) if uy|p = v|p.

Lemma B.1.2. Let u,v: D — R be convex functions. Then

Moty = My + o and  pixg = A"y, YA > 0.

The following result is the celebrated Alexandrov maximum principle.
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B.1 Monge-Ampere Equation

Theorem B.1.3. Let D be an open bounded convex set, and let u : D — R be a convex
function such that ulsp = 0. Then there exists a dimensional constant C = C(d) such
that

lu(z)| < C(d) diam(D)“T dist(z, dD)2|0u(D)|4, Vz € D. (B.1)

Proof. Let (z,u(z)) be a point on the graph of w, and consider the convex “conical”
function y — C,(y) with vertex at (z,u(x)) that vanishes on 9D. Since u < C,, in D (by
the convexity of u), Lemma 2.7 implies that

~

9C. ()| < |0C.(D)| < lou(D)];

s0, to conclude the proof, it suffices to bound |0C, (x)| from below. It is not hard to see

e 9C,(x) contains the ball B, with p = |u(z)|/diam(D)

~

e JC,(x) contains a vector of norm |u(x)|/dist(z, D)

Thus, R
0C:(x) O B,(0) U{q}, lq| = [u(x)]/dist(z,OD).

Since 86:6(:5) is convex, it follows that a@(az) contains the cone C generated by ¢ and
Y, ={pe B,: (p,q) =0} Therefore

c(d)p"lq| = IC] < [ou(D)|.
O

Theorem B.1.4. Let D be an open bounded convex set, and let v be a Borel measure on
D with v(D) < co. Then there ezists a unique convex function u : D — R solving the
Dirichlet problem

by =v inD

u=">0 on 0D
Proof. By the stability result proved in Lemma below, since any finite measure can be
approximated in the weak* topology by a finite sum of Dirac deltas, we only need to solve
the Dirichlet problem when v = Zfil a;0,, with z; € D and «; > 0. To prove existence
of a solution, we use the so-called Perron method: we define

Slv] :=={v: Q= R convex : v|yq =0, u, > v in Q}

and we show that the largest element in S[v] is the desired solution. We split the argument
into several steps.

Step 1: S[v] # 0. To construct an element of S[v], we consider the “conical” function
C,,, that is 0 on 02 and takes the value —1 at its vertex ;. The Monge-Ampere measure
of this function is concentrated at x; and has mass equal to some positive number f;
corresponding to the measure of the set of supporting hyperplanes at x;. Now, consider
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the convex function v = Zfil AC,,, where X has to be chosen. We notice that v|sq = 0.
In addition, provided A is sufficiently large, Lemma below implies that

N N N N
S SR SIS SEUTAES SYoa
i=1 i=1 i=1 i=1

This yields v € S[v].
Step 2: v1,v9 € S[v] = w = max {vy,v2} € S[v]. Set

Qo :={v1 =w}, Q:={v1>wv}, and Qp:={v; <wy}

Also, given a Borel set £ C (2, consider F; = E N €);.
Since €2; and )y are open sets, w|g, = v; and w|q, = v,

aw(El) = 8U1(E1), 3w(E2) = 8U2<E2).
In addition, since w = v; on €}y and w > v; everywhere else, we have
(9’01<E) - 8w(EO)

Therefore,
fw(E) Z poy (Eo U En) + pi, (E2) 2 v(E).

Step 3: w 1= sup,cg,) v belongs to S[v]. Let wy, T u locally uniformly. Then p,, —
. Also, we deduce immediately that u|sg = 0 by construction; hence, u € S[v].

Step 4: The measure pu, is supported at the points {x,---xy}. Otherwise, there
exists a set &£ C D such that

En{zy,...,zx} =0 and [Ou(E)| = p,(E) >0

Therefore,
‘Gu(E)\[Ui]\;l@u(xi) U au(aD)H = |Ou(E)| > 0

Let 2o € E and p € Ou(zo)\[UY,0u(z;) U u(dD)]. Then there exists § > 0 such that
u=lyyp+20 on {zy,...,x5} U000, (B.2)

where £, ,(x) = u(zo) + p- (r — x9). Set u := max{l,,, + J,u} = u. Notice that @ is
convex, 4 > u, and it follows by (B.2) that & = w in a neighborhood of {x1, ..., x5} UJQ.
In particular, @|,, = 0 and 0u (z;) = Jdu (x;), which implies that ulogegqu € S[v]. This
is a contradiction.

Step 5., = v. By Step 3 and Step 4, we know that u, = Zf\il B, with 3; > «;.
Assume that 81 = p, (1) > v(z)) = a.

Since Ou (x;) is a convex set of positive measure, pick a vector p € R" that belongs
to the interior of Ou (x;), define £, ,(2) := u(z) + (p, 2 — x;), and consider the function
U :=u—{,, Notice that OU(z) = du(z) — p for all z, which implies, in particular, that
|0U (x;)| = B, and that 0 belongs to the interior of OU (x;). Choose § > 0 small enough
so that

{ULU@@;)+0tn({xr,...,an} UON) =10,
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and define the function

(7(2) _JUE) if U>U(x;)+6
T\ A=OUE) U )+ iU <U () +6.

Taking 6 > 0 even smaller if necessary, we observe that

90 (2)] = (1= 0)" |0 ()] = (1= 8)"B; > .

Notice that U > U and U = U in a neighborhood of {zi,...,zx} U 9. Hence,
considering @ := U + £, , (see Figure 2.7 ), we see that @ > u,

Uly = ulyo =0, 0u(zx;) =0u(x;) Viz#j, and |0u(z;)| > ay.

Thus, @ € S[v], but this contradicts the maximality of u and concludes the proof. [

B.2 Schauder estimate

Let . be the Schwartz space of all rapidly decreasing functions, and .’ the dual space of
& called Schwartz generalized function (or tempered distribution) space. Given f € .,
let . f = f be the Fourier transform defined by

fle) = [ e p(oae

Let x : R — [0,1] be a smooth radial function with

xX(€) =1, [§] <1, x(§) =0, [§] =3/2.

Define
@(€) == x(&) — x(29).

It is easy to see that ¢ > 0 and supp ¢ C B/, \ Bi/2 and formally
k
i _ k—o00

D e2778) = x(278) — x (28 T L (B.3)

j=—k
In particular, if |j — 5| > 2, then

suppp(277-) Nsuppp(277'-) = @.
From now on we shall fix such x and ¢ and define
Ajf=F Hp27)Ff), jeL.

We first recall the following useful lemmas.
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Lemma B.2.1. Let a € (0,1). For any u € C*, it holds that

1 ) )
— sup 2]a||Aju||oo < [u]a < Csup 2]a||Aju||O<>> (B.4)
C JEZL JEL

where

and C only depends on d and c.
Proof. O]
Lemma B.2.2. There is a constant C = C(d, «), such that for any u € C*?,

[V2ulq < C[AU],. (B.5)
Proof. Define

(&) = %@(5), W () = Z7 (") (@), (€)= ™ (277¢), h(z) = 27" (2x).

It is easy to see

O =Y uf = "G(D)f =) W'« f,

ez JEL ez
For any k,l € {1,2,--- ,d}, there is a constant C' only depending on «, d such that
Il < C277°(fla, V) € Z. (B.6)

For any z € R%, noticing A* € .(R?) and [ h* = ¢(0) = 0, we get

Juj' (2)] = ‘/R W (y) f(z — y)dy' -

< [ )] a2 < Olla2

Rd

[ e =272 - s

By this,
[Ou() = Ouly)| <Y uf!(x) = u ()] + Y |ufl (@) = uf (y)]

J<K J>K

<z =yl D IVuflloe +2 ) lufllloc

J<K I>K

<Clflale =yl > 2V +Cfla Y 27

J<K I>K
<O[fla (Jo — y[20F 4 270K)

Choosing K € Z such that 275 < |z — y| < 2751 we obtain
|Oru(z) — Opu(y)] < Chlfla - o —y[*.

So we complete our proof. O
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Lemma B.2.3. Suppose f: R, — R, and for any 0 < s <t < 1,
f(s) <Of(t)+Alt—s)7+ B,

for some v > 0, then
f(s) < C(v,0) (A(t —s) 7+ B) (B.7)

Proof. Let tg =t, t; = s + (1 — 7)7(t — s), where 7 € (6'/7,1). By iteration,

f(s)=f(to) <Of(t:1) + A(ti —tisa) "+ B
<O’f(ta) + 0A(ta —t)) "+ 0B+ A(ty —t)) " + B

k—1 k-1
<O ft) AL —T) (=9 (07 +BY 6
i=0 i=0
A
<C B.
((t —sy )
]
Theorem B.2.4. Suppose
Lu = aij&-ju +b'Ou+cu=f, in Bpg, (B.8)
and B
01¢)* < a”&g;, (B.9)
(el se) + B {olece) + (R sy + B Blacs,) 510)
+ (R |lel| e (mr) + R [clasmy) < A
Then,

[v2u]a;BR/2 < C{[f]a;BR + RiaHfHL"O(BR) + RiQiaHuHL"O(BR)}'
Proof. Suppose n € C*, n(z) =1if x € B,, n(z) =0 if x € BS and
(r =PIVl + (r = p)"[VEnla < C(d, K).
Let v := un, then

a 00 = (a — a?)n - u + 2a% O;udjm + audyn + (b'Ou) - n+ (cu) -n + fn.

[V2ulass, <[V*0la < C{r [V ulass, + (r = )Vl ia
(0= )7 Ve, + (0= )7Vl + (= ) llocs,
+(r =) llullzes) + [flas, + (r = P)‘“llf”m(&)}

There is a constant ry € (0, 1) such that Cyr§ < 1/4. By interpolation, there is a constant
C such that

01{(7“ = p) IVl + (r = p) 7 [VUlaip, + (1 = p) "Vl + (0 = p) *[tas,
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9a 1 oo
+(r—p)~? HUHLMBT)} < Vo, +C0r = p) 7 lull s,
Combing the above inequalities and B.2.3, we obtain that for any 0 < p < r < 7,

(V2ulass, < C{r = 0)ullzemy + [Flas, + 00 = ) fllimisn )

Hence, by choosing p = 3, r = ¢ and using finite cover technique, we find if u satisfies
Lu = fin By and

)‘|£|2 g aijgigj; ||a||CO‘(B1) + ||b||Ca(B1) + ||C||Ca(31) g A7

then
926l < C{Uflas, + 1 o + Nullzoon |-

By rescaling, it is easy to obtain our result. O]
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